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1

State and prove the Poisson summation formula for R. Use it to obtain the
transformation formula for the θ-function

θ(t) =
∞
∑

n=−∞

e−πn2t = t−1/2θ(1/t), t > 0.

Deduce the analytic continuation and functional equation for the Riemann ζ-function.

[You may assume that e−πx2

is its own Fourier transform.]

2

Let χ : (Z/NZ)× → C× be a Dirichlet character. Define the Dirichlet L-function
L(χ, s). Using a suitable Mellin transform, show that if χ 6= χ0, then L(χ, s) can be
analytically continued to the left of the line Re(s) = 1.

Assuming the result that for all χ 6= χ0, L(χ, 1) 6= 0, show that the series

F (s) =
∑

p prime
(p,N)=1

χ(p)p−s ,

for real s > 1, satisfies

F (s) → ∞ as s → 1 if χ = χ0

F (s) is bounded as s → 1 if χ 6= χ0.

Use this to prove Dirichlet’s theorem on primes in arithmetic progressions.

[Throughout this question you may use without proof any facts about characters of
finite abelian groups you need, as well as the results of Question 1.]
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3

Show that there is no nonzero modular form of weight 2 on Γ(1) = SL2(Z). (You
may use any result about the number of zeros of a modular form, but should state it
clearly.)

Let

G2(z) =
∞
∑

m=−∞

∞
∑′

n=−∞

1

(mz + n)2

where Σ′ denotes that the term (m,n) = (0, 0) is omitted.

a) Show that G2(z) =
π2

3
E2(z), where

E2(z) = 1− 24
∞
∑

n=1

σ1(n)q
n (q = e2πiz).

b) Assuming the relation E2(−1/z) = z2E2(z) + 12z/2πi, show that if k > 0 and
f ∈ Mk(Γ(1)) then

g =
1

2πi

df

dz
−

k

12
E2f

belongs to Mk+2(Γ(1)), and that g is a cusp form if and only if f is.

c) Let ∆ =
∑

n>1 τ(n)q
n be the normalised cusp form of weight 12. Show that

(1− n)τ(n) = 24

n−1
∑

r=1

σ1(r)τ(n− r).
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Let Γ ⊂ Γ(1) = SL2(Z) be a subgroup of finite index. Show that for any
γ ∈ G = GL2(Q)+, the subgroup Γ′ = Γ(1) ∩ γ−1Γγ has finite index in Γ(1).

What is a modular form of weight k on Γ? Explain the condition of holomorphy
at the cusps of Γ, and show that if f ∈ Mk(Γ) and γ ∈ G then f |kγ is holomorphic at
infinity. Deduce that f |kγ ∈ Mk(Γ

′).

Let χ : (Z/NZ)× → C× be a Dirichlet character, where N > 1. For f ∈ Sk(Γ(1)),
define

fχ(z) =
∑

16j6N
(j,N)=1

χ(j)−1f
(

z +
j

N

)

.

Show that fχ ∈ Sk(Γ1(N) ∩ Γ0(N
2)) and that its q-expansion is a constant multiple of

∑

n>1
(n,N)=1

χ(n)an(f)q
n.

[Here Γ0(N) and Γ1(N) denote the subgroups

{(

a b
c d

)

∈ Γ(1)

∣

∣

∣

∣

c ≡ 0 (mod N)

}

,

{(

a b
c d

)

∈ Γ(1)

∣

∣

∣

∣

c ≡ 0, a ≡ d ≡ 1 (mod N)

}

respectively.]

5

Let k > 0 be a positive even integer.

a) Show that if f ∈ Sk(Γ(1)) then yk/2 |f | is bounded on the upper half-plane. Use
this to prove that |an(f)| < Cnk/2 for some constant C.

b) Define the Hecke operators T (n) as elements of the algebra of double cosets
for (GL2(Q)+,Γ(1)), and show that the associated operators Tn = nk/2−1T (n) acting on
Mk(Γ(1)) are given by

Tnf = nk/2−1
∑

a,d>1
ad=n
06b<d

f
∣

∣

∣

k

(

a b
0 d

)

.

(Any results you need about subgroups of Z2 should be proved.)

Determine the action of Tn on q-expansions of modular forms, and show that if
Tnf = λf then an(f) = λa1(f).

Show also that if a0(f) 6= 0 and f is an eigenfunction of all the Tn, then f is a
multiple of Ek.
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