MATHEMATICAL TRIPOS Part III

Monday 12 June, 2017 $\,$ 9:00 am to 12:00 pm

PAPER 137

MODULAR FORMS AND L-FUNCTIONS

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

State and prove the Poisson summation formula for \mathbb{R} . Use it to obtain the transformation formula for the θ -function

$$\theta(t) = \sum_{n = -\infty}^{\infty} e^{-\pi n^2 t} = t^{-1/2} \theta(1/t), \qquad t > 0.$$

Deduce the analytic continuation and functional equation for the Riemann ζ -function.

[You may assume that $e^{-\pi x^2}$ is its own Fourier transform.]

$\mathbf{2}$

Let $\chi: (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character. Define the Dirichlet *L*-function $L(\chi, s)$. Using a suitable Mellin transform, show that if $\chi \neq \chi_0$, then $L(\chi, s)$ can be analytically continued to the left of the line $\operatorname{Re}(s) = 1$.

Assuming the result that for all $\chi \neq \chi_0$, $L(\chi, 1) \neq 0$, show that the series

$$F(s) = \sum_{\substack{p \text{ prime} \\ (p,N)=1}} \chi(p) p^{-s} \,,$$

for real s > 1, satisfies

$$F(s) \to \infty \qquad \text{as } s \to 1 \text{ if } \chi = \chi_0$$

$$F(s) \text{ is bounded} \qquad \text{as } s \to 1 \text{ if } \chi \neq \chi_0.$$

Use this to prove Dirichlet's theorem on primes in arithmetic progressions.

[Throughout this question you may use without proof any facts about characters of finite abelian groups you need, as well as the results of Question 1.]

UNIVERSITY OF

3

Show that there is no nonzero modular form of weight 2 on $\Gamma(1) = SL_2(\mathbb{Z})$. (You may use any result about the number of zeros of a modular form, but should state it clearly.)

3

Let

$$G_2(z) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \frac{1}{(mz+n)^2}$$

where Σ' denotes that the term (m, n) = (0, 0) is omitted.

a) Show that $G_2(z) = \frac{\pi^2}{3} E_2(z)$, where

$$E_2(z) = 1 - 24 \sum_{n=1}^{\infty} \sigma_1(n) q^n \qquad (q = e^{2\pi i z}).$$

b) Assuming the relation $E_2(-1/z) = z^2 E_2(z) + 12z/2\pi i$, show that if k > 0 and $f \in M_k(\Gamma(1))$ then

$$g = \frac{1}{2\pi i} \frac{df}{dz} - \frac{k}{12} E_2 f$$

belongs to $M_{k+2}(\Gamma(1))$, and that g is a cusp form if and only if f is.

c) Let $\Delta = \sum_{n \ge 1} \tau(n) q^n$ be the normalised cusp form of weight 12. Show that

$$(1-n)\tau(n) = 24\sum_{r=1}^{n-1}\sigma_1(r)\tau(n-r).$$

UNIVERSITY OF

 $\mathbf{4}$

Let $\Gamma \subset \Gamma(1) = SL_2(\mathbb{Z})$ be a subgroup of finite index. Show that for any $\gamma \in G = GL_2(\mathbb{Q})^+$, the subgroup $\Gamma' = \Gamma(1) \cap \gamma^{-1}\Gamma\gamma$ has finite index in $\Gamma(1)$.

What is a modular form of weight k on Γ ? Explain the condition of holomorphy at the cusps of Γ , and show that if $f \in M_k(\Gamma)$ and $\gamma \in G$ then $f|_k \gamma$ is holomorphic at infinity. Deduce that $f|_k \gamma \in M_k(\Gamma')$.

Let $\chi \colon (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character, where N > 1. For $f \in S_k(\Gamma(1))$, define

$$f_{\chi}(z) = \sum_{\substack{1 \leq j \leq N\\(j,N)=1}} \chi(j)^{-1} f\left(z + \frac{j}{N}\right).$$

Show that $f_{\chi} \in S_k(\Gamma_1(N) \cap \Gamma_0(N^2))$ and that its q-expansion is a constant multiple of

$$\sum_{\substack{n \ge 1\\(n,N)=1}} \chi(n) a_n(f) q^n.$$

[Here $\Gamma_0(N)$ and $\Gamma_1(N)$ denote the subgroups

$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(1) \mid c \equiv 0 \pmod{N} \right\}, \quad \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(1) \mid c \equiv 0, \ a \equiv d \equiv 1 \pmod{N} \right\}$$

respectively.]

5

Let k > 0 be a positive even integer.

a) Show that if $f \in S_k(\Gamma(1))$ then $y^{k/2} |f|$ is bounded on the upper half-plane. Use this to prove that $|a_n(f)| < Cn^{k/2}$ for some constant C.

b) Define the Hecke operators T(n) as elements of the algebra of double cosets for $(GL_2(\mathbb{Q})^+, \Gamma(1))$, and show that the associated operators $T_n = n^{k/2-1}T(n)$ acting on $M_k(\Gamma(1))$ are given by

$$T_n f = n^{k/2-1} \sum_{\substack{a,d \ge 1 \\ ad = n \\ 0 \le b < d}} f \Big|_k \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}.$$

(Any results you need about subgroups of \mathbb{Z}^2 should be proved.)

Determine the action of T_n on q-expansions of modular forms, and show that if $T_n f = \lambda f$ then $a_n(f) = \lambda a_1(f)$.

Show also that if $a_0(f) \neq 0$ and f is an eigenfunction of all the T_n , then f is a multiple of E_k .

5

END OF PAPER

Part III, Paper 137