

### MATHEMATICAL TRIPOS Part III

Friday, 2 June, 2017  $\,$  9:00 am to 12:00 pm  $\,$ 

## **PAPER 136**

## LOCAL FIELDS

Attempt all FOUR questions.

The questions carry equal weight.

#### STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

# CAMBRIDGE

1

State a version of Hensel's Lemma.

Let K be a field equipped with a non-archimedean absolute value |-|. We denote the valuation ring of K by  $\mathcal{O}_K$  and the residue field by  $k_K$ . Assume that, for any finite extension L/K, there is a unique extension of |-| to L (also denoted by |-|). Let  $f \in \mathcal{O}_K[X]$  be a monic irreducible polynomial of degree n, with reduction  $\overline{f} \in k_K[X]$ . Let M/K be a splitting field of f and let  $\alpha_1, \ldots, \alpha_n$  be the roots of f in M (with multiplicities). Show that  $|\alpha_i| = |\alpha_1| \leq 1$  for all  $i = 1, \ldots, n$ , and that  $\overline{f}(X) = \varphi(X)^m$  for some monic irreducible polynomial  $\varphi \in k_K[X]$  and integer  $m \in \mathbb{Z}_{\geq 1}$ .

Deduce that if  $g \in \mathcal{O}_K[X]$  is a monic polynomial with reduction  $\overline{g} \in k_K[X]$ , and there is a factorization  $\overline{g} = \overline{g}_1 \overline{g}_2$  in  $k_K[X]$  with  $\overline{g}_1$ ,  $\overline{g}_2$  monic and coprime, then there are monic polynomials  $g_1, g_2 \in \mathcal{O}_K[X]$ , with reductions  $\overline{g}_1, \overline{g}_2$  respectively, such that  $g = g_1 g_2$ .

2 Let  $\mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p)$  be the space of continuous functions  $\mathbb{Z}_p \to \mathbb{Q}_p$ . Define the difference operator  $\Delta$  on  $\mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p)$  and the Mahler coefficients of a function  $f \in \mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p)$ . State Mahler's Theorem and prove it, under the assumption that the Mahler coefficients tend to 0 [You may use standard identities for binomial coefficients without proof. You may use explicit formulae for  $\Delta^n$ , provided they are clearly stated].

Let  $T : \mathcal{C}(\mathbb{Z}_p, \mathbb{Q}_p) \to \mathbb{Q}_p$  be a linear function which is translation-invariant (i.e. if h(x) = f(x+a) for some  $a \in \mathbb{Z}_p$ , then T(f) = T(h)). Show that T = 0.

**3** Define the lower and upper ramification groups of a finite Galois extension L/K of local fields.

Let  $K = \mathbb{F}_p((t))$ . Let L be the extension of K obtained by adjoining a root of  $f(X) = X^p - X - t^{1-p}$ . Show that L/K is Galois and compute the lower and upper ramification groups of L/K [Results on computing ramification groups may be used as long as they are clearly stated][If  $\alpha$  and  $\beta$  are roots of f, it might be helpful to consider  $(\beta - \alpha)^p$ ].

4 Write an essay on Lubin–Tate extensions. You could start by defining formal groups, and focus on (and finish by) sketching the computation of the Galois groups of Lubin–Tate extensions [You do not need to discuss the relation with Local Class Field Theory].

#### END OF PAPER