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1

State a version of Hensel’s Lemma.

Let K be a field equipped with a non-archimedean absolute value | − |. We denote
the valuation ring of K by OK and the residue field by kK . Assume that, for any finite
extension L/K, there is a unique extension of | − | to L (also denoted by | − |). Let
f ∈ OK [X] be a monic irreducible polynomial of degree n, with reduction f̄ ∈ kK [X]. Let
M/K be a splitting field of f and let α1, . . . , αn be the roots of f inM (with multiplicities).
Show that |αi| = |α1| 6 1 for all i = 1, . . . , n, and that f̄(X) = ϕ(X)m for some monic
irreducible polynomial ϕ ∈ kK [X] and integer m ∈ Z>1.

Deduce that if g ∈ OK [X] is a monic polynomial with reduction ḡ ∈ kK [X], and
there is a factorization ḡ = ḡ1ḡ2 in kK [X] with ḡ1, ḡ2 monic and coprime, then there are
monic polynomials g1, g2 ∈ OK [X], with reductions ḡ1, ḡ2 respectively, such that g = g1g2.

2 Let C(Zp,Qp) be the space of continuous functions Zp → Qp. Define the difference
operator ∆ on C(Zp,Qp) and the Mahler coefficients of a function f ∈ C(Zp,Qp). State
Mahler’s Theorem and prove it, under the assumption that the Mahler coefficients tend
to 0 [You may use standard identities for binomial coefficients without proof. You may
use explicit formulae for ∆n, provided they are clearly stated].

Let T : C(Zp,Qp) → Qp be a linear function which is translation-invariant (i.e. if
h(x) = f(x+a) for some a ∈ Zp, then T (f) = T (h)). Show that T = 0.

3 Define the lower and upper ramification groups of a finite Galois extension L/K of
local fields.

Let K = Fp((t)). Let L be the extension of K obtained by adjoining a root of
f(X) = Xp−X− t1−p. Show that L/K is Galois and compute the lower and upper rami-
fication groups of L/K [Results on computing ramification groups may be used as long as
they are clearly stated][If α and β are roots of f , it might be helpful to consider (β−α)p].

4 Write an essay on Lubin–Tate extensions. You could start by defining formal
groups, and focus on (and finish by) sketching the computation of the Galois groups of
Lubin–Tate extensions [You do not need to discuss the relation with Local Class Field The-
ory].
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