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(a) State the Milnor-Svarc theorem.

(b) Let G act by isometries on the geodesic metric space X (the action need not be

properly discontinuous). Suppose that the action is cobounded (i.e. there exists a
ball B ⊂ X with ∪g∈GgB = X). State a weaker version of the Milnor-Svarc theorem
that holds in this situation.

(c) Explain what modifications need to be made to the proof of the Milnor-Svarc
theorem in order to obtain a proof of your statement from part (b). (You do not

need to write a complete proof.)

(d) Let A = 〈a, a′ | aa′a−1(a′)−1〉 and let B = 〈b, b′ | bb′b−1(b′)−1〉 and consider the free
product

A ∗B ∼= 〈a, a′, b, b′ | aa′a−1(a′)−1, bb′b−1(b′)−1〉.

Let T be the graph with a vertex for each coset of A in A ∗ B, and a vertex for
each coset of B in A ∗ B, with vertices gA and hB adjacent in T if and only if
gA ∩ hB 6= ∅. You may assume without proof that T is a tree.

Find an infinite generating set of A ∗ B so that the corresponding (locally infinite)
Cayley graph of A ∗B is quasi-isometric to T .

Explain why no Cayley graph coming from a finite generating set of A ∗B is quasi-
isometric to a tree.

Part III, Paper 133



3

2

(Note: In this question, given a 2–complex A, we denote by A(1) its 1–skeleton,
which we endow with the usual path-metric in which each edge has length 1.)

(a) Let M be a geodesic metric space. Say what it means for N ⊂ M to be C–
quasiconvex, where C ∈ R.

Let X be a compact 2–complex satisfying the C ′(1/6) small-cancellation condition.

(b) State the Greendlinger theorem for X.

Let X̃ be the universal cover of X. Let Ỹ ⊂ X̃ be a connected subcomplex with the
following property:

for any 2–cell R of X̃, either R lies in Ỹ or ∂pR = OI, where |I| > |O| and no 1–cell

traversed by I lies in Ỹ . (⋆)

(c) Let p, q ∈ Ỹ be 0–cells and let γ be a geodesic of X̃(1) joining p to q. Let σ be
a combinatorial geodesic of Ỹ (1) joining p to q. Say why there is a reduced disc
diagram Dσ → X̃ with boundary path γσ−1.

(d) By considering σ and Dσ as above, prove that Ỹ (1) is a quasiconvex subspace of
X̃(1).

3

(a) Let G be a hyperbolic group. Let H ∼= 〈a, b | aba−1 = b3〉. Show that there is no
injective homomorphism H → G.

(b) Let
H = 〈a, b, c | aba−1b−1 = c, bcb−1c−1 = cac−1a−1 = 1〉.

Prove that the inclusion 〈c〉 → H is not a quasi-isometric embedding, where 〈c〉 ∼= Z

is endowed with the metric coming from any finite generating set. (Hint: first prove
that akbka−kb−k = ck

2

for all k > 0.)
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(a) Give the definition of a Dehn presentation.

(b) Let 〈A | R〉 be a Dehn presentation for a group G. Suppose g ∈ G has finite order
n > 1. Let w be a word over the alphabet A∪A−1 so that w represents an element
of G which is conjugate to g, and w is of minimal length with this property. Prove
that there exists r ∈ R so that the word wn has a subword u so that u is a subword
of r and |u| > |r|/2.

(c) Deduce that |w| 6 |r|/2 + 2.

(d) By considering M = max{|r|/2 + 2 | r ∈ R}, prove that G has only finitely many
conjugacy classes of finite-order elements.

END OF PAPER

Part III, Paper 133


