

MATHEMATICAL TRIPOS Part III

Thursday, 8 June, 2017 9:00 am to 11:00 am

PAPER 133

GEOMETRIC GROUP THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

- 2
- (a) State the Milnor-Svarc theorem.
- (b) Let G act by isometries on the geodesic metric space X (the action need not be properly discontinuous). Suppose that the action is cobounded (i.e. there exists a ball $B \subset X$ with $\bigcup_{g \in G} gB = X$). State a weaker version of the Milnor-Svarc theorem that holds in this situation.
- (c) Explain what modifications need to be made to the proof of the Milnor-Svarc theorem in order to obtain a proof of your statement from part (b). (You do not need to write a complete proof.)
- (d) Let $A = \langle a, a' \mid aa'a^{-1}(a')^{-1} \rangle$ and let $B = \langle b, b' \mid bb'b^{-1}(b')^{-1} \rangle$ and consider the free product

$$A * B \cong \langle a, a', b, b' \mid aa'a^{-1}(a')^{-1}, bb'b^{-1}(b')^{-1} \rangle.$$

Let \mathcal{T} be the graph with a vertex for each coset of A in A * B, and a vertex for each coset of B in A * B, with vertices gA and hB adjacent in \mathcal{T} if and only if $gA \cap hB \neq \emptyset$. You may assume without proof that \mathcal{T} is a tree.

Find an infinite generating set of A * B so that the corresponding *(locally infinite)* Cayley graph of A * B is quasi-isometric to \mathcal{T} .

Explain why no Cayley graph coming from a finite generating set of A * B is quasiisometric to a tree. $\mathbf{2}$

(Note: In this question, given a 2-complex A, we denote by $A^{(1)}$ its 1-skeleton, which we endow with the usual path-metric in which each edge has length 1.)

(a) Let M be a geodesic metric space. Say what it means for $N \subset M$ to be C-quasiconvex, where $C \in \mathbb{R}$.

Let X be a compact 2-complex satisfying the C'(1/6) small-cancellation condition.

(b) State the Greendlinger theorem for X.

Let \widetilde{X} be the universal cover of X. Let $\widetilde{Y} \subset \widetilde{X}$ be a connected subcomplex with the following property:

for any 2-cell R of \widetilde{X} , either R lies in \widetilde{Y} or $\partial_p R = OI$, where $|I| \ge |O|$ and no 1-cell traversed by I lies in \widetilde{Y} . (*)

- (c) Let $p, q \in \widetilde{Y}$ be 0-cells and let γ be a geodesic of $\widetilde{X}^{(1)}$ joining p to q. Let σ be a combinatorial geodesic of $\widetilde{Y}^{(1)}$ joining p to q. Say why there is a reduced disc diagram $D_{\sigma} \to \widetilde{X}$ with boundary path $\gamma \sigma^{-1}$.
- (d) By considering σ and D_{σ} as above, prove that $\widetilde{Y}^{(1)}$ is a quasiconvex subspace of $\widetilde{X}^{(1)}$.

3

- (a) Let G be a hyperbolic group. Let $H \cong \langle a, b \mid aba^{-1} = b^3 \rangle$. Show that there is no injective homomorphism $H \to G$.
- (b) Let

$$H = \langle a, b, c \mid aba^{-1}b^{-1} = c, \ bcb^{-1}c^{-1} = cac^{-1}a^{-1} = 1 \rangle.$$

Prove that the inclusion $\langle c \rangle \to H$ is not a quasi-isometric embedding, where $\langle c \rangle \cong \mathbb{Z}$ is endowed with the metric coming from any finite generating set. (*Hint: first prove that* $a^k b^k a^{-k} b^{-k} = c^{k^2}$ for all $k \ge 0$.)

UNIVERSITY OF

 $\mathbf{4}$

- 4
- (a) Give the definition of a Dehn presentation.
- (b) Let $\langle A \mid R \rangle$ be a Dehn presentation for a group G. Suppose $g \in G$ has finite order n > 1. Let w be a word over the alphabet $A \cup A^{-1}$ so that w represents an element of G which is conjugate to g, and w is of minimal length with this property. Prove that there exists $r \in R$ so that the word w^n has a subword u so that u is a subword of r and |u| > |r|/2.
- (c) Deduce that $|w| \leq |r|/2 + 2$.
- (d) By considering $M = \max\{|r|/2 + 2 \mid r \in R\}$, prove that G has only finitely many conjugacy classes of finite-order elements.

END OF PAPER