
MATHEMATICAL TRIPOS Part III

Wednesday, 7 June, 2017 9:00 am to 12:00 pm

PAPER 132

RIEMANN SURFACES AND TEICHMÜLLER THEORY
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(a) Let U ⊂ C be a non-empty simply-connected open proper subset. Prove that
there exists a holomorphic bijection f : U → H, where H = {z ∈ C : Im(z) >
0}.

(b) Let

Γ(2) = {A ∈ SL(2,R) : A ≡

(
1 0
0 1

)
mod (2)},

acting on H by Möbius transformations. Prove that H/Γ(2) ∼= C \ {0, 1}.

(c) Show that C\{0, 1} is equipped with a complete conformal metric of constant
negative curvature and compute the length of its shortest closed geodesic.

2

(a) Explain, carefully, why there is a natural action of the group SL(2,R) on
the moduli space of holomorphic 1-forms ΩMg = {(X,ω) : ω ∈ H0(X,KX)}
and holomorphic quadratic differentials QMg = {(X, q) : q ∈ H0(X,K2

X)},
respectively. Prove that the map s((X,ω)) = (X,ω2), s : ΩMg → QMg is
SL(2,R)-equivariant.

(b) Is there a similar natural action of SL(2,R) on the moduli space of holomor-
phic cubic differentials CMg = {(X, c) : c ∈ H0(X,K3

X)}?

(c) Let n ∈ N, with n > 1, and (Xn, ωn) be the 1-form obtained by identifying
the opposite sides of a regular euclidean 2n-gon, of area 1, by translation.
Prove, carefully, that Xn is a closed Riemann surface and compute its genus.
Do the 1-forms (X4, ω4) and (X5, ω5) belong to the same SL(2,R)-orbit?
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(a) Let Γ be a path family on a Riemann surface X. Define the extremal length

λ(Γ,X) of Γ.

(b) Let f : X → Y be a smooth orientation preserving diffeomorphism between
two Riemann surfaces X,Y , which is K-quasiconformal, for some K > 1.
Prove that λ(f(Γ), Y ) 6 K · λ(Γ,X).

(c) State and prove Teichmüller’s uniqueness theorem.

(any results quoted from lectures should be clearly stated.)

4

(a) State and prove Mumford’s compactness theorem.

(b) Let (Xn, qn) ∈ QT g, n = 1, 2, . . . (g > 2) be a sequence of area one quadratic
differentials and γ a simple closed curve with ℓXn

(γ) → 0, as n → ∞, in
the hyperbolic metric of Xn, Prove that L(γ, |qn|

1/2) → 0 as n → ∞, where
L(γ, |qn|

1/2) = inf{
∫
γ̃ |qn|

1/2} and the infimum is over all closed curves γ̃
homotopic to γ. Is the converse true?
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