MATHEMATICAL TRIPOS Part III

Wednesday, 7 June, 2017 $\,$ 9:00 am to 12:00 pm

PAPER 132

RIEMANN SURFACES AND TEICHMÜLLER THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

- 1
- (a) Let $\mathcal{U} \subset \mathbb{C}$ be a non-empty simply-connected open proper subset. Prove that there exists a holomorphic bijection $f : \mathcal{U} \to \mathbb{H}$, where $\mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$.
- (b) Let

$$\Gamma(2) = \{ A \in \operatorname{SL}(2, \mathbb{R}) : A \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod (2) \},\$$

acting on \mathbb{H} by Möbius transformations. Prove that $\mathbb{H}/\Gamma(2) \cong \mathbb{C} \setminus \{0, 1\}$.

- (c) Show that $\mathbb{C} \setminus \{0, 1\}$ is equipped with a complete conformal metric of constant negative curvature and compute the length of its shortest closed geodesic.
- $\mathbf{2}$
- (a) Explain, carefully, why there is a natural action of the group $SL(2, \mathbb{R})$ on the moduli space of holomorphic 1-forms $\Omega \mathcal{M}_g = \{(X, \omega) : \omega \in H^0(X, K_X)\}$ and holomorphic quadratic differentials $\mathcal{QM}_g = \{(X,q) : q \in H^0(X, K_X^2)\}$, respectively. Prove that the map $s((X, \omega)) = (X, \omega^2)$, $s : \Omega \mathcal{M}_g \to \mathcal{QM}_g$ is $SL(2, \mathbb{R})$ -equivariant.
- (b) Is there a similar natural action of $SL(2, \mathbb{R})$ on the moduli space of holomorphic cubic differentials $\mathcal{CM}_g = \{(X, c) : c \in H^0(X, K_X^3)\}$?
- (c) Let $n \in \mathbb{N}$, with n > 1, and (X_n, ω_n) be the 1-form obtained by identifying the opposite sides of a regular euclidean 2n-gon, of area 1, by translation. Prove, carefully, that X_n is a closed Riemann surface and compute its genus. Do the 1-forms (X_4, ω_4) and (X_5, ω_5) belong to the same $SL(2, \mathbb{R})$ -orbit?

(a) Let Γ be a path family on a Riemann surface X. Define the *extremal length*

3

- $\lambda(\Gamma, X)$ of Γ .
- (b) Let $f: X \to Y$ be a smooth orientation preserving diffeomorphism between two Riemann surfaces X, Y, which is K-quasiconformal, for some K > 1. Prove that $\lambda(f(\Gamma), Y) \leq K \cdot \lambda(\Gamma, X)$.
- (c) State and prove Teichmüller's uniqueness theorem.(any results quoted from lectures should be clearly stated.)

 $\mathbf{4}$

- (a) State and prove Mumford's compactness theorem.
- (b) Let $(X_n, q_n) \in \mathcal{QT}_g$, $n = 1, 2, \ldots (g \ge 2)$ be a sequence of area one quadratic differentials and γ a simple closed curve with $\ell_{X_n}(\gamma) \to 0$, as $n \to \infty$, in the hyperbolic metric of X_n , Prove that $L(\gamma, |q_n|^{1/2}) \to 0$ as $n \to \infty$, where $L(\gamma, |q_n|^{1/2}) = \inf\{\int_{\widetilde{\gamma}} |q_n|^{1/2}\}$ and the infimum is over all closed curves $\widetilde{\gamma}$ homotopic to γ . Is the converse true?

END OF PAPER