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(a) What is the curvature 2-form R of a Riemannian manifold (M,g)? Prove the first
Bianchi identity R(X,Y )Z+R(Y,Z)X+R(Z,X)Y = 0, where X,Y,Z are vector fields on M .

Define the Ricci curvature Ric and the sectional curvature K. Show that if dimM = 3
then the components K(ei, ej), for an orthonormal basis {e1, e2, e3}, are determined by the
Ricci curvature. [Algebraic symmetries of the Riemann curvature may be assumed.]

(b) Let f : M → N be a local isometry between Riemannian manifolds, where N is
complete. Show that M is complete if and only if f is a covering map.

[The Hopf–Rinow theorem may be assumed if accurately stated.]

2

Define the exponential map expp and geodesic coordinates for a point p in a Riemannian
manifold. Show the geodesic coordinates are well-defined on some open neighbourhood of p.
What is a geodesic sphere? State the Gauss lemma.

Define the distance function d(·, ·) induced by a metric on a connected Riemannian
manifold M . Given a point p ∈ M , prove that for each q ∈ M , q 6= p, and each sufficiently
small δ = δ(q) > 0 there exists p0 ∈ M such that d(p, p0) = δ and d(p, p0)+ d(p0, q) = d(p, q).

Let G be a Lie group and ∇ the Levi-Civita connection of a bi-invariant (i.e. left-
and right-invariant) Riemannian metric on G. Prove that ∇XX = 0 for every left-invariant
vector field X on G. Deduce that every geodesic γ(t) on G starting at the identity element
γ(0) = I ∈ G is defined by a group homomorphism R → G.

[Standard existence and uniqueness results for integral curves of vector fields may be
assumed if accurately stated.]
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Let γ(t), 0 6 t 6 1 be a geodesic curve in an n-dimensional Riemannian manifold
(n > 2). Define the Jacobi fields along γ. What is a geodesic variation of γ? Prove that every
Jacobi field along γ arises from a geodesic variation.

Explain why the Jacobi fields J along γ point-wise normal to γ and such that J(0) = 0,
J(1) = 0 form a vector space of dimension not greater than n− 1. Give an example when the
dimension n− 1 is attained.

Suppose now that M is an orientable Riemannian manifold of even dimension with
positive sectional curvature and γ0 is a closed geodesic in M . Prove that γ0 is homotopic to
a closed curve with length strictly smaller than that of γ0.

[You may assume the formula for the second variation of energy. Algebraic symmetries
of the Riemann curvature tensor may be assumed.]
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Explain how a Riemannian metric on a manifold induces an inner product on the
fibres of the bundle of differential forms of every given degree. Define the Hodge ∗-operator
and the Laplace–Beltrami operator ∆. Prove that a differential form α on M is harmonic
if and only if ∗α is so.

State the Hodge decomposition theorem.

Let M be a compact oriented Riemannian manifold and f a smooth function on M .
Prove that if ∆f > 0 then f is constant on M . Prove that every de Rham cohomology
class on M is represented by a unique harmonic form.

Suppose that M also has a smooth right action of a connected Lie group G, i.e.
a smooth map R : M × G → M , such that R(x, e) = x for the identity element e ∈ G

and R(R(x, h1), h2) = R(x, h1h2), for all x ∈ M and h1, h2,∈ G. Suppose further that for
every h ∈ G, the map Rh = R( · , h) is an isometry of M . Show that every harmonic form
α on M is invariant under the action of G, i.e. R∗

hα = α for all h.

[You may assume that the operator δ = (−1)n(p+1)+1∗ d ∗ on p-forms (n = dimM ,
p > 0) is the formal adjoint of the exterior derivative d. Standard results about de Rham
cohomology and smooth homotopy may be assumed if accurately stated.]
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State the Bochner–Weitzenböck formula for 1-forms. [You should include careful
definitions of the terms that appear in the formula.]

Define the holonomy group of a connected Riemannian manifold (M,g). What is the
holonomy representation? State the fundamental principle of Riemannian holonomy.

Suppose that (M,g) is a compact Riemannian manifold with Ric(g) > 0 at each point
and with irreducible holonomy representation. Suppose further that M admits a covering
X × T k → M , for some 0 6 k 6 dimM , where X is a compact simply-connected manifold
and T k is a k-dimensional torus. Show that the fundamental group of M is finite.

[You may assume that every cohomology class on a compact Riemannian manifold is
represented by a harmonic form. You may also assume M and its finite cover have the same
Betti numbers.]
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