MATHEMATICAL TRIPOS Part III

Monday, 12 June, 2017 1:30 pm to 4:30 pm

PAPER 131

RIEMANNIAN GEOMETRY

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

(a) What is the *curvature 2-form* R of a Riemannian manifold (M, g)? Prove the first Bianchi identity R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0, where X, Y, Z are vector fields on M.

Define the *Ricci curvature* Ric and the *sectional curvature* K. Show that if dim M = 3 then the components $K(e_i, e_j)$, for an orthonormal basis $\{e_1, e_2, e_3\}$, are determined by the Ricci curvature. [Algebraic symmetries of the Riemann curvature may be assumed.]

(b) Let $f: M \to N$ be a local isometry between Riemannian manifolds, where N is complete. Show that M is complete if and only if f is a covering map.

[The Hopf-Rinow theorem may be assumed if accurately stated.]

$\mathbf{2}$

Define the exponential map \exp_p and geodesic coordinates for a point p in a Riemannian manifold. Show the geodesic coordinates are well-defined on some open neighbourhood of p. What is a geodesic sphere? State the Gauss lemma.

Define the distance function $d(\cdot, \cdot)$ induced by a metric on a connected Riemannian manifold M. Given a point $p \in M$, prove that for each $q \in M$, $q \neq p$, and each sufficiently small $\delta = \delta(q) > 0$ there exists $p_0 \in M$ such that $d(p, p_0) = \delta$ and $d(p, p_0) + d(p_0, q) = d(p, q)$.

Let G be a Lie group and ∇ the Levi-Civita connection of a bi-invariant (i.e. leftand right-invariant) Riemannian metric on G. Prove that $\nabla_X X = 0$ for every left-invariant vector field X on G. Deduce that every geodesic $\gamma(t)$ on G starting at the identity element $\gamma(0) = I \in G$ is defined by a group homomorphism $\mathbb{R} \to G$.

[Standard existence and uniqueness results for integral curves of vector fields may be assumed if accurately stated.]

3

Let $\gamma(t)$, $0 \leq t \leq 1$ be a geodesic curve in an *n*-dimensional Riemannian manifold $(n \geq 2)$. Define the *Jacobi fields* along γ . What is a *geodesic variation* of γ ? Prove that every Jacobi field along γ arises from a geodesic variation.

Explain why the Jacobi fields J along γ point-wise normal to γ and such that J(0) = 0, J(1) = 0 form a vector space of dimension not greater than n-1. Give an example when the dimension n-1 is attained.

Suppose now that M is an orientable Riemannian manifold of even dimension with positive sectional curvature and γ_0 is a closed geodesic in M. Prove that γ_0 is homotopic to a closed curve with length strictly smaller than that of γ_0 .

[You may assume the formula for the second variation of energy. Algebraic symmetries of the Riemann curvature tensor may be assumed.]

CAMBRIDGE

4

Explain how a Riemannian metric on a manifold induces an inner product on the fibres of the bundle of differential forms of every given degree. Define the *Hodge* *-operator and the *Laplace–Beltrami operator* Δ . Prove that a differential form α on M is harmonic if and only if * α is so.

State the Hodge decomposition theorem.

Let M be a compact oriented Riemannian manifold and f a smooth function on M. Prove that if $\Delta f \ge 0$ then f is constant on M. Prove that every de Rham cohomology class on M is represented by a unique harmonic form.

Suppose that M also has a smooth right action of a connected Lie group G, i.e. a smooth map $R: M \times G \to M$, such that R(x, e) = x for the identity element $e \in G$ and $R(R(x, h_1), h_2) = R(x, h_1h_2)$, for all $x \in M$ and $h_1, h_2, \in G$. Suppose further that for every $h \in G$, the map $R_h = R(\cdot, h)$ is an isometry of M. Show that every harmonic form α on M is invariant under the action of G, i.e. $R_h^* \alpha = \alpha$ for all h.

[You may assume that the operator $\delta = (-1)^{n(p+1)+1} * d * on p$ -forms ($n = \dim M$, p > 0) is the formal adjoint of the exterior derivative d. Standard results about de Rham cohomology and smooth homotopy may be assumed if accurately stated.]

$\mathbf{5}$

State the Bochner–Weitzenböck formula for 1-forms. [You should include careful definitions of the terms that appear in the formula.]

Define the holonomy group of a connected Riemannian manifold (M, g). What is the holonomy representation? State the fundamental principle of Riemannian holonomy.

Suppose that (M, g) is a compact Riemannian manifold with $\operatorname{Ric}(g) \ge 0$ at each point and with irreducible holonomy representation. Suppose further that M admits a covering $X \times T^k \to M$, for some $0 \le k \le \dim M$, where X is a compact simply-connected manifold and T^k is a k-dimensional torus. Show that the fundamental group of M is finite.

[You may assume that every cohomology class on a compact Riemannian manifold is represented by a harmonic form. You may also assume M and its finite cover have the same Betti numbers.]

END OF PAPER