

MATHEMATICAL TRIPOS Part III

Thursday, 8 June, 2017 1:30 pm to 3:30 pm

PAPER 130

RAMSEY THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1

- (ii) Deduce from Ramsey's Theorem that whenever \mathbb{N} is finitely coloured, there exists an infinite sequence $x_1 < x_2 < x_3 < \ldots$ of natural numbers such that the set $\{x_i x_j^2 : i < j\}$ is monochromatic.
- (iii) Show that it is possible to finitely colour the *real numbers* in the interval $[1, \infty)$ in such a way that for each $x \in [1, \infty)$, the colour of x differs from that of each real number in the interval [1.9x, 2x].
- (iv) Using part (iii) or otherwise, show that it is *NOT TRUE* that whenever \mathbb{N} is finitely coloured, there exists an infinite sequence $x_1 < x_2 < x_3 < \ldots$ of natural numbers such that the set $\{x_i x_j^2 : i \neq j\}$ is monochromatic.

$\mathbf{2}$

- (i) Prove the Hales–Jewett Theorem, i.e., show that for any $m, k \in \mathbb{N}$, there exists an $n = n(m, k) \in \mathbb{N}$ such that whenever $[m]^n$ is k-coloured, there exists a monochromatic combinatorial line.
- (ii) Deduce van der Waerden's Theorem from the Hales–Jewett Theorem.
- (iii) A subset of [N] is called an *interval* if it is of the form $\{a, a + 1, a + 2, \dots, b 1, b\}$ for some $1 \leq a \leq b \leq N$.

Show that the following strengthening of the Hales–Jewett Theorem is *NOT TRUE*: for any $m, k \in \mathbb{N}$, there exists an $N = N(m, k) \in \mathbb{N}$ such that whenever $[m]^N$ is k-coloured, there exists a monochromatic combinatorial line whose active coordinate set is an interval.

[Hint: Consider, for example, the line $\{(2, 2, 5, x, x, x, 7, 9) : 1 \le x \le 9\}$ in $[9]^8$; what distinguishes the two points corresponding to x = 5 and x = 7 from the seven other points on this line?]

UNIVERSITY OF

3

(i) Show that if a_1, \ldots, a_n are non-zero rationals, then the matrix (a_1, \ldots, a_n) is partition-regular if and only if some (non-empty) subset of the a_i sum to zero.

[You may assume van der Waerden's Theorem. No form of Rado's Theorem may be assumed without proof.]

(ii) Suppose that a_1, \ldots, a_n are non-zero rationals such that the matrix (a_1, \ldots, a_n) is partition-regular. Show that whenever \mathbb{N} is finitely coloured, there exists a monochromatic solution $(y_1, \ldots, y_n) \in \mathbb{N}^n$ to the equation

$$\frac{a_1}{y_1} + \dots + \frac{a_n}{y_n} = 0.$$

[*Hint:* Suppose that T is a natural number with the property that there exists a monochromatic solution to $a_1x_1 + \cdots + a_nx_n = 0$ in [T] whenever [T] is k-coloured. What can you now say about a k-colouring of [S] where $S = \operatorname{lcm}\{1, 2, \ldots, T\}$?]

 $\mathbf{4}$

(i) Consider the dynamical system $(\mathcal{C}, \mathcal{L})$, where $\mathcal{C} = \{c : \mathbb{Z} \to [k]\} = [k]^{\mathbb{Z}}$ is the space of all k-colourings of \mathbb{Z} , and \mathcal{L} denotes the left-shift operator on this space.

Show that a colouring $c \in C$ is minimal if and only if c has the 'bounded gaps property', i.e., if for each interval $I \subset \mathbb{Z}$, there exists an M such that c(I) appears as a contiguous subsequence of c(U) for each interval $U \subset \mathbb{Z}$ of length at least M.

(ii) State and prove Hindman's Theorem.

[You may assume the following result: if (X,T) is a dynamical system such that $X = \bar{x}$ for some $x \in X$, and $Y \subset X$ is minimal, then there exists a $y \in Y$ such that x and y are proximal.]

(iii) Does there exist a left-shift invariant metric d on $[2]^{\mathbb{Z}}$, i.e., a metric d such that

$$d(x, y) = d(\mathcal{L}(x), \mathcal{L}(y))$$

for all $x, y \in [2]^{\mathbb{Z}}$, which induces the (usual) product topology on $[2]^{\mathbb{Z}}$? [*Hint: Can you find two distinct points* $x, y \in [2]^{\mathbb{Z}}$ such that both $\mathcal{L}^n(x)$ and $\mathcal{L}^n(y)$ converge to the same point as $n \to \infty$?]

END OF PAPER