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(i) Prove Ramsey’s Theorem for graphs, i.e., show that whenever N(2) is finitely coloured,
there exists an infinite set X ⊂ N such that X(2) is monochromatic.

(ii) Deduce from Ramsey’s Theorem that whenever N is finitely coloured, there exists
an infinite sequence x1 < x2 < x3 < . . . of natural numbers such that the set
{xix

2
j : i < j} is monochromatic.

(iii) Show that it is possible to finitely colour the real numbers in the interval [1,∞) in
such a way that for each x ∈ [1,∞), the colour of x differs from that of each real
number in the interval [1.9x, 2x].

(iv) Using part (iii) or otherwise, show that it is NOT TRUE that whenever N is finitely
coloured, there exists an infinite sequence x1 < x2 < x3 < . . . of natural numbers
such that the set {xix

2
j : i 6= j} is monochromatic.

2

(i) Prove the Hales–Jewett Theorem, i.e., show that for any m,k ∈ N, there exists an
n = n(m,k) ∈ N such that whenever [m]n is k-coloured, there exists a monochromatic
combinatorial line.

(ii) Deduce van der Waerden’s Theorem from the Hales–Jewett Theorem.

(iii) A subset of [N ] is called an interval if it is of the form {a, a + 1, a + 2, . . . , b− 1, b}
for some 1 6 a 6 b 6 N .

Show that the following strengthening of the Hales–Jewett Theorem is NOT TRUE :
for any m,k ∈ N, there exists an N = N(m,k) ∈ N such that whenever [m]N is
k-coloured, there exists a monochromatic combinatorial line whose active coordinate
set is an interval.

[Hint: Consider, for example, the line {(2, 2, 5, x, x, x, 7, 9) : 1 6 x 6 9} in [9]8; what
distinguishes the two points corresponding to x = 5 and x = 7 from the seven other

points on this line? ]
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(i) Show that if a1, . . . , an are non-zero rationals, then the matrix (a1, . . . , an) is
partition-regular if and only if some (non-empty) subset of the ai sum to zero.

[You may assume van der Waerden’s Theorem. No form of Rado’s Theorem may be
assumed without proof.]

(ii) Suppose that a1, . . . , an are non-zero rationals such that the matrix (a1, . . . , an)
is partition-regular. Show that whenever N is finitely coloured, there exists a
monochromatic solution (y1, . . . , yn) ∈ N

n to the equation

a1

y1
+ · · ·+

an

yn
= 0.

[Hint: Suppose that T is a natural number with the property that there exists a

monochromatic solution to a1x1 + · · · + anxn = 0 in [T ] whenever [T ] is k-coloured.

What can you now say about a k-colouring of [S] where S = lcm{1, 2, . . . , T}? ]

4

(i) Consider the dynamical system (C,L), where C = {c : Z → [k]} = [k]Z is the space
of all k-colourings of Z, and L denotes the left-shift operator on this space.

Show that a colouring c ∈ C is minimal if and only if c has the ‘bounded gaps
property’, i.e., if for each interval I ⊂ Z, there exists an M such that c(I) appears
as a contiguous subsequence of c(U) for each interval U ⊂ Z of length at least M .

(ii) State and prove Hindman’s Theorem.

[You may assume the following result: if (X,T ) is a dynamical system such that
X = x̄ for some x ∈ X, and Y ⊂ X is minimal, then there exists a y ∈ Y such that
x and y are proximal.]

(iii) Does there exist a left-shift invariant metric d on [2]Z, i.e., a metric d such that

d(x, y) = d(L(x),L(y))

for all x, y ∈ [2]Z, which induces the (usual) product topology on [2]Z?

[Hint: Can you find two distinct points x, y ∈ [2]Z such that both Ln(x) and Ln(y)
converge to the same point as n → ∞? ]
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