MATHEMATICAL TRIPOS Part III

Thursday, 1 June, 2017 $\,$ 9:00 am to 11:00 pm $\,$

PAPER 129

INTRODUCTION TO ADDITIVE COMBINATORICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let $\delta > 0$, let *n* be an odd positive integer and let *A* be a subset of $\{1, 2, \ldots, n\}$ of cardinality at least δn . Prove that either *A* contains an arithmetic progression of length 3 or there is an arithmetic progression $P \subset \{1, 2, \ldots, n\}$ of length at least $c_1\sqrt{n}$ such that $|A \cap P| \ge \delta(1 + c_2\delta)|P|$, where c_1 depends on δ only, c_2 is an absolute constant, and c_1 and c_2 are both positive.

$\mathbf{2}$

State and prove Szemerédi's regularity lemma.

The half graph of size n is the bipartite graph with two vertex sets X and Y that are both copies of $\{1, 2, ..., n\}$, with $x \in X$ joined to $y \in Y$ if and only if $x \leq y$. Suppose that X and Y are partitioned into sets X_i and Y_j respectively, with each X_i and each Y_j of size at least 100.

For each positive integer m with $1 \leq m \leq n$ there exist unique i and j such that $m \in X_i$ and $m \in Y_j$. Call m close to its X-boundary if fewer than $|X_i|/10$ points in X_i are greater than m or fewer than $|X_i|/10$ points in X_i are less than m. Define closeness to the Y boundary in a similar way.

Obtain an upper bound for the number of elements of $\{1, 2, ..., n\}$ that are close to their X or Y boundaries, and deduce that not every pair (X_i, Y_j) is (1/10)-regular. (The constant 1/10 is not optimized.)

3

Prove that there exists a constant C < 3 such that if A is any subset of \mathbb{F}_3^n of size at least C^n , then there are distinct elements $x, y, z \in A$ such that x + y + z = 0. [You may assume standard probabilistic estimates, provided that you state them carefully.]

UNIVERSITY OF

 $\mathbf{4}$

Let X and Y be finite sets and let $f: X \times Y \to \mathbb{R}$. Define the box norm $||f||_{\square}$ of f and prove that $||.||_{\square}$ is a norm. Prove also that if $u: X \to \mathbb{R}$ and $v: Y \to \mathbb{R}$, then

$$|\mathbb{E}_{x,y}f(x,y)u(x)v(y)| \leq ||f||_{\Box} ||u||_{2} ||v||_{2}.$$

Let G be a tripartite graph with finite vertex sets X, Y and Z. Write G(X, Y) for the bipartite subgraph induced by X and Y, and similarly for the other two pairs. Let α, β and γ be the densities of G(X, Y), G(Y, Z) and G(X, Z), respectively.

Suppose that the function $G(X, Y) - \alpha$ has box norm at most c, and that every vertex in Z is adjacent to exactly $\beta |Y|$ vertices in Y. Prove that the number of triangles in G differs from $\alpha\beta\gamma|X||Y||Z|$ by at most 3c|X||Y||Z|. [Hint: Let $f_1 = G(X, Y) - \alpha$, $f_2 = G(Y, Z) - \beta$ and $f_3 = G(X, Z) - \gamma$, and consider the expression

$$\mathbb{E}_{x,y,z}(\alpha + f_1(x,y))(\beta + f_2(y,z))(\gamma + f_3(x,z)).$$

END OF PAPER