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1

Let δ > 0, let n be an odd positive integer and let A be a subset of {1, 2, . . . , n} of
cardinality at least δn. Prove that either A contains an arithmetic progression of length
3 or there is an arithmetic progression P ⊂ {1, 2, . . . , n} of length at least c1

√
n such that

|A ∩ P | > δ(1 + c2δ)|P |, where c1 depends on δ only, c2 is an absolute constant, and c1
and c2 are both positive.

2

State and prove Szemerédi’s regularity lemma.

The half graph of size n is the bipartite graph with two vertex sets X and Y that
are both copies of {1, 2, . . . , n}, with x ∈ X joined to y ∈ Y if and only if x 6 y. Suppose
that X and Y are partitioned into sets Xi and Yj respectively, with each Xi and each Yj

of size at least 100.

For each positive integer m with 1 6 m 6 n there exist unique i and j such that
m ∈ Xi and m ∈ Yj. Call m close to its X-boundary if fewer than |Xi|/10 points in Xi

are greater than m or fewer than |Xi|/10 points in Xi are less than m. Define closeness
to the Y boundary in a similar way.

Obtain an upper bound for the number of elements of {1, 2, . . . , n} that are close to
their X or Y boundaries, and deduce that not every pair (Xi, Yj) is (1/10)-regular. (The
constant 1/10 is not optimized.)

3

Prove that there exists a constant C < 3 such that if A is any subset of Fn
3
of size

at least Cn, then there are distinct elements x, y, z ∈ A such that x+ y+ z = 0. [You may
assume standard probabilistic estimates, provided that you state them carefully.]
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4

Let X and Y be finite sets and let f : X × Y → R. Define the box norm ‖f‖� of f
and prove that ‖.‖� is a norm. Prove also that if u : X → R and v : Y → R, then

|Ex,yf(x, y)u(x)v(y)| 6 ‖f‖�‖u‖2‖v‖2.

Let G be a tripartite graph with finite vertex sets X,Y and Z. Write G(X,Y ) for
the bipartite subgraph induced by X and Y , and similarly for the other two pairs. Let
α, β and γ be the densities of G(X,Y ), G(Y,Z) and G(X,Z), respectively.

Suppose that the function G(X,Y ) − α has box norm at most c, and that every
vertex in Z is adjacent to exactly β|Y | vertices in Y . Prove that the number of triangles
in G differs from αβγ|X||Y ||Z| by at most 3c|X||Y ||Z|. [Hint: Let f1 = G(X,Y ) − α,
f2 = G(Y,Z)− β and f3 = G(X,Z)− γ, and consider the expression

Ex,y,z(α+ f1(x, y))(β + f2(y, z))(γ + f3(x, z)).

END OF PAPER

Part III, Paper 129


