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1

Let A be a k-algebra. Define the Jaconson radical J(A).

What does it mean for a finitely generated right A-module P to be an indecompos-
able projective?

Suppose that A is right Artinian. Let P be an an indecomposable projective right
submodule of A. Show that P/PJ(A) is a simple A-module.

Define what is meant by a block of A.

Suppose k is algebraically closed and has characteristic 3. Express kS3 as a direct
sum of blocks, and as a direct sum of indecomposable projectives.

2

Define what it means for a k-algebra A to be right Noetherian?

Let B be a an algebra generated by a subalgebra A and an element x. Suppose that
A is right Noetherian and that A+ xA = A+Ax. Show that B is right Noetherian.

Deduce that the quantum torus kq[X,X−1, Y, Y −1] is right Noetherian.

Define what it means for a proper ideal P of A to be prime.

Show that the intersection N of the prime ideals of A is nilpotent, and is the
intersection of finitely many prime ideals.

3

Show that the quantum plane kq[X,Y ] is a domain.

Let A be a right Noetherian k-algebra which is a domain. What does it mean for a
non-zero A-module to be uniform. Show that A is a uniform right A-module, and that it
embeds in a division k-algebra.

4

Define what is meant by the Gelfand-Kirillov (GK) dimension of a finitely generated
k-algebra A, and also define the GK-dimension of a non-zero finitely generated A-module.

Let S be a commutative graded k-algebra generated by finitely many elements of
degree 1. Show that the GK-dimension of S is an integer.

Let A be the first Weyl algebra A1(k) where k has characteristic zero. What are
the possible GK-dimensions of non-zero finitely generated A-modules? Briefly justify your
answer giving examples in each case.
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5

Let A be a k-algebra and let M be a finitely generated A−A bimodule.

Define the Hochschild cohomology HHn(A,M) and also define the (Hochschild
cohomological) dimension Dim(A) of A.

What is meant by an extension of A by M? Show that there is a one-one
correspondence between HH2(A,M) and the isomorphism classes of extensions of A by
M .

Define what is meant by a star product on A⊗ k[[t]]. What does it mean for a star
produce to be trivial?

Show that if Dim(A) 6 1 then any star product on A⊗ k[[t]] is trivial.

6 Let k be an algebraically closed field of characteristic zero. Let A be a finitely
generated commutative k algebra. Define what is meant by a k derivation of A. Denote
the set of derivations of A by Der(A). Show that Der(A) forms a Lie algebra.

Show that HH0(A,A) = A and that HH1(A,A) = Der(A).

Define the cup product and the Gerstenhaber bracket on the Hochschild cochain
complex of A.

What is meant by a Gerstenhaber algebra?

Calculate the Hochschild cohomology of k[X] where k is algebraically closed of
characteristic zero. What is the Gerstenhaber algebra structure?

What is the Gerstenhaber algebra structure on the Hochschild cohomology of
k[X,Y ]? (You may state the HKR theorem for k[X,Y ]).
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