

MATHEMATICAL TRIPOS Part III

Tuesday, 6 June, 2017 $\,$ 9:00 am to 12:00 pm

PAPER 125

ELLIPTIC CURVES

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

(a) Let $\phi : E_1 \to E_2$ be an isogeny of elliptic curves. Explain how the degree of ϕ may be read off from the rational functions defining ϕ . Illustrate by computing the degree of the multiplication-by-2 map.

(b) Let P_1, P_2 be points on $y^2 = x^3 + ax + b$. Show that if s_1, s_2, s_3 are the elementary symmetric polynomials in x_1, x_2, x_3 the x-coordinates of $P_1, P_2, P_1 + P_2$ then

$$(s_2 - a)^2 = 4s_1(s_3 + b).$$

Use this to prove that deg : Hom $(E_1, E_2) \to \mathbb{Z}$ is a quadratic form.

(c) Let E/\mathbb{F}_p be an elliptic curve. Find a formula for $\#E(\mathbb{F}_{p^2})$ in terms of $N = \#E(\mathbb{F}_p)$ and p.

$\mathbf{2}$

Let K be a finite extension of \mathbb{Q}_p , with valuation ring \mathcal{O}_K and residue field k. Let $n \ge 2$ be an integer coprime to p.

(a) What does it mean for an elliptic curve E/K to have good reduction? In this case show that there is a surjective group homomorphism $E(K) \to \tilde{E}(k)$ and describe its kernel.

(b) What is a formal group \mathcal{F} over \mathcal{O}_K ? State a condition in terms of the leading coefficient for a morphism of formal groups to be an isomorphism.

(c) Under the hypothesis in (a), show that if $P \in E(K)$ then $K([n]^{-1}P)/K$ is an unramified extension, and the composite of all such extensions (as P varies) has degree at most n[K(E[n]):K].

3

(a) Let E/\mathbb{Q} be the elliptic curve $y^2 = x^3 + kx$ where $k \ge 1$ is an integer. Show that if p is a prime not dividing 2k then $\#\widetilde{E}(\mathbb{F}_p) = p+1$ if and only if $p \equiv 3 \pmod{4}$. Deduce that $\#E(\mathbb{Q})_{\text{tors}}$ divides 4. Can it ever equal 4?

(b) Let E/\mathbb{Q} be the elliptic curve $y^2 = x(x+1)(x+m^2)$ where $m \ge 2$ is an integer. Show that if E has good reduction at 5 or 7 then $E(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$.

[You may use any general facts about formal groups provided you state them clearly.]

UNIVERSITY OF

 $\mathbf{4}$

EITHER

Write an essay on Galois cohomology and its application to the proof of the weak Mordell-Weil theorem.

OR

Write an essay on heights and their application to the proof of the Mordell-Weil theorem.

$\mathbf{5}$

Describe a procedure, that often works in practice, for determining the rank of an elliptic curve with a rational 2-torsion point.

(a) Let $\nu(x)$ be the number of distinct prime divisors of an integer x. Show that if E/\mathbb{Q} is an elliptic curve with Weierstrass equation $y^2 = x(x^2 + ax + b)$ with $a, b \in \mathbb{Z}$ then

$$\operatorname{rank} E(\mathbb{Q}) \leq \nu(b) + \nu(a^2 - 4b).$$

(b) Show that p is not a congruent number for all primes p in a suitable congruence class (of odd numbers) mod 8.

END OF PAPER