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(a) Let φ : E1 → E2 be an isogeny of elliptic curves. Explain how the degree of φ
may be read off from the rational functions defining φ. Illustrate by computing the degree
of the multiplication-by-2 map.

(b) Let P1, P2 be points on y2 = x3+ax+b. Show that if s1, s2, s3 are the elementary
symmetric polynomials in x1, x2, x3 the x-coordinates of P1, P2, P1 + P2 then

(s2 − a)2 = 4s1(s3 + b).

Use this to prove that deg : Hom(E1, E2) → Z is a quadratic form.

(c) Let E/Fp be an elliptic curve. Find a formula for #E(Fp2) in terms of
N = #E(Fp) and p.

2

Let K be a finite extension of Qp, with valuation ring OK and residue field k. Let
n > 2 be an integer coprime to p.

(a) What does it mean for an elliptic curve E/K to have good reduction? In this
case show that there is a surjective group homomorphism E(K) → Ẽ(k) and describe its
kernel.

(b) What is a formal group F over OK? State a condition in terms of the leading
coefficient for a morphism of formal groups to be an isomorphism.

(c) Under the hypothesis in (a), show that if P ∈ E(K) then K([n]−1P )/K is an
unramified extension, and the composite of all such extensions (as P varies) has degree at
most n[K(E[n]) : K].

3

(a) Let E/Q be the elliptic curve y2 = x3+kx where k > 1 is an integer. Show that
if p is a prime not dividing 2k then #Ẽ(Fp) = p+1 if and only if p ≡ 3 (mod 4). Deduce
that #E(Q)tors divides 4. Can it ever equal 4?

(b) Let E/Q be the elliptic curve y2 = x(x+1)(x+m2) where m > 2 is an integer.
Show that if E has good reduction at 5 or 7 then E(Q)tors ∼= Z/2Z× Z/4Z.

[You may use any general facts about formal groups provided you state them clearly.]
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EITHER

Write an essay on Galois cohomology and its application to the proof of the weak
Mordell-Weil theorem.

OR

Write an essay on heights and their application to the proof of the Mordell-Weil
theorem.

5

Describe a procedure, that often works in practice, for determining the rank of an
elliptic curve with a rational 2-torsion point.

(a) Let ν(x) be the number of distinct prime divisors of an integer x. Show that if
E/Q is an elliptic curve with Weierstrass equation y2 = x(x2 + ax+ b) with a, b ∈ Z then

rankE(Q) 6 ν(b) + ν(a2 − 4b).

(b) Show that p is not a congruent number for all primes p in a suitable congruence
class (of odd numbers) mod 8.

END OF PAPER
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