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In this question, IC stands for the axiom “there is an inaccessible cardinal”, i.e., a
regular cardinal κ such that for all λ < κ, we have |℘(λ)| < κ.

(i) Suppose M ⊆ N are classes and ϕ(v1, . . . , vn) is a formula of the language of set
theory L∈. Define the phrase “the formula ϕ is absolute between M and N”.

(ii) Define the class of ∆ZF

0 -formulas.

(iii) Define the levels Vα of the von Neumann hierarchy by transfinite recursion.

(iv) Prove that ∆ZF
0 -formulas are absolute between transitive classes M ⊆ N that are

models of ZF.

(v) Show that the formula ϕ(x) saying “x is a cardinal” is absolute between transitive
models of the form Vα for limit ordinals α.

(vi) An cardinal α is called worldly if Vα |= ZFC. Work in ZFC and show that if κ is an
inaccessible cardinal, then the set of worldly cardinals below κ has size κ.
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(i) Define the notion of a hierarchy and state the Reflection Theorem for hierarchies.

(ii) Suppose X is any transitive set. Define by transfinite recursion the constructive
universe L(X) over X.

(iii) Prove that there is a formula Φ(x) with one free variable that has the property that
for any transitive sets X and M with X ∈ M , we have that (M,∈) |= Φ(X) if and
only if M = Lα(X) for a limit ordinal α.

(iv) Suppose that X is a transitive set. Formulate a version of the Condensation Lemma
for L(X) and prove it.

(v) Suppose i1 = ℵ2 and let X := ℘(N). Prove that L(X) |= ¬CH.
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In this question, assume that M is a countable transitive model of ZFC, (P,6P) ∈ M
and (Q,6Q) ∈ M are partial orders, and that G is P-generic over M and H is

(i) Give precise definitions of both the semantic forcing relation  and the syntactic
forcing relation ∗.

(ii) Assume that you already proved for any two P-names σ and τ that val(σ,G) =
val(τ,G) if and only if there is a p ∈ G such that p ∗ σ = τ . Under this assumption,
show that the following are equivalent:

(a) val(σ,G) ∈ val(τ,G) and

(b) there is a p ∈ G such that p ∗ σ ∈ τ .

(iii) Show that M [G] |= PowerSet.

(iv) Define the product order on P × Q by (p, q) 6 (p′, q′) if and only if p 6P p′ and
q 6Q q′. Assume that H is P×Q-generic over M . Show that there are G0 ⊆ P and
G1 ⊆ Q such that

(a) H = G0 ×G1,

(b) G0 is P-generic over M , and

(c) G1 is Q-generic over M [G0].
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In this question, assume that M is a countable transitive model of ZFC and
(P,6,1) ∈ M is a partial order.

(i) Define what an atom of P is and what it means for P to be non-atomic.

(ii) Define the partial order Fn(I, J).

(iii) Show that if G is P-generic over M and P is non-atomic, then G /∈ M .

(iv) Show that if G is Fn(ℵM
2 ×ℵ0, 2)-generic over M , then in M [G] there is an injection

from ℵM
2 into ℘(N).

(v) Assume that P is non-atomic. Build the following sequence of models by recursion:
M0 := M ; if Mi is constructed, find Gi which is P-generic over Mi and let
Mi+1 := Mi[Gi]. Let N :=

⋃
i∈ω

Mi. Prove that N is not a model of PowerSet.
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