

MATHEMATICAL TRIPOS Part III

Thursday, 8 June, 2017 9:00 am to 12:00 pm

PAPER 121

TOPICS IN SET THEORY

Attempt all **FOUR** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

In this question, IC stands for the axiom "there is an inaccessible cardinal", i.e., a regular cardinal κ such that for all $\lambda < \kappa$, we have $|\wp(\lambda)| < \kappa$.

 $\mathbf{2}$

- (i) Suppose $M \subseteq N$ are classes and $\varphi(v_1, \ldots, v_n)$ is a formula of the language of set theory \mathcal{L}_{\in} . Define the phrase "the formula φ is absolute between M and N".
- (ii) Define the class of Δ_0^{ZF} -formulas.
- (iii) Define the levels \mathbf{V}_{α} of the von Neumann hierarchy by transfinite recursion.
- (iv) Prove that $\Delta_0^{\sf ZF}$ -formulas are absolute between transitive classes $M \subseteq N$ that are models of $\sf ZF$.
- (v) Show that the formula $\varphi(x)$ saying "x is a cardinal" is absolute between transitive models of the form \mathbf{V}_{α} for limit ordinals α .
- (vi) An cardinal α is called *worldly* if $\mathbf{V}_{\alpha} \models \mathsf{ZFC}$. Work in ZFC and show that if κ is an inaccessible cardinal, then the set of worldly cardinals below κ has size κ .

 $\mathbf{2}$

- (i) Define the notion of a hierarchy and state the Reflection Theorem for hierarchies.
- (ii) Suppose X is any transitive set. Define by transfinite recursion the constructive universe L(X) over X.
- (iii) Prove that there is a formula $\Phi(x)$ with one free variable that has the property that for any transitive sets X and M with $X \in M$, we have that $(M, \in) \models \Phi(X)$ if and only if $M = \mathbf{L}_{\alpha}(X)$ for a limit ordinal α .
- (iv) Suppose that X is a transitive set. Formulate a version of the Condensation Lemma for $\mathbf{L}(X)$ and prove it.
- (v) Suppose $\beth_1 = \aleph_2$ and let $X := \wp(\mathbb{N})$. Prove that $\mathbf{L}(X) \models \neg \mathsf{CH}$.

CAMBRIDGE

3

In this question, assume that M is a countable transitive model of ZFC , $(\mathbb{P}, \leq_{\mathbb{P}}) \in M$ and $(\mathbb{Q}, \leq_{\mathbb{Q}}) \in M$ are partial orders, and that G is \mathbb{P} -generic over M and H is

- (ii) Assume that you already proved for any two \mathbb{P} -names σ and τ that $val(\sigma, G) = val(\tau, G)$ if and only if there is a $p \in G$ such that $p \Vdash^* \sigma = \tau$. Under this assumption, show that the following are equivalent:
 - (a) $\operatorname{val}(\sigma, G) \in \operatorname{val}(\tau, G)$ and
 - (b) there is a $p \in G$ such that $p \Vdash^* \sigma \in \tau$.
- (iii) Show that $M[G] \models \mathsf{PowerSet}$.
- (iv) Define the product order on $\mathbb{P} \times \mathbb{Q}$ by $(p,q) \leq (p',q')$ if and only if $p \leq_{\mathbb{P}} p'$ and $q \leq_{\mathbb{Q}} q'$. Assume that H is $\mathbb{P} \times \mathbb{Q}$ -generic over M. Show that there are $G_0 \subseteq \mathbb{P}$ and $G_1 \subseteq \mathbb{Q}$ such that
 - (a) $H = G_0 \times G_1$,
 - (b) G_0 is \mathbb{P} -generic over M, and
 - (c) G_1 is \mathbb{Q} -generic over $M[G_0]$.

$\mathbf{4}$

In this question, assume that M is a countable transitive model of ZFC and $(\mathbb{P}, \leq, \mathbf{1}) \in M$ is a partial order.

- (i) Define what an atom of \mathbb{P} is and what it means for \mathbb{P} to be non-atomic.
- (ii) Define the partial order $\operatorname{Fn}(I, J)$.
- (iii) Show that if G is \mathbb{P} -generic over M and \mathbb{P} is non-atomic, then $G \notin M$.
- (iv) Show that if G is $\operatorname{Fn}(\aleph_2^M \times \aleph_0, 2)$ -generic over M, then in M[G] there is an injection from \aleph_2^M into $\wp(\mathbb{N})$.
- (v) Assume that \mathbb{P} is non-atomic. Build the following sequence of models by recursion: $M_0 := M$; if M_i is constructed, find G_i which is \mathbb{P} -generic over M_i and let $M_{i+1} := M_i[G_i]$. Let $N := \bigcup_{i \in \omega} M_i$. Prove that N is not a model of PowerSet.

4

END OF PAPER