

MATHEMATICAL TRIPOS Part III

Thursday, 1 June, 2017 1:30 pm to 4:30 pm

PAPER 119

CATEGORY THEORY

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1 Explain what is meant by an *equivalence of categories*. Assuming the axiom of choice, show that a functor $F : \mathcal{C} \to \mathcal{D}$ is part of an equivalence if and only if it is full, faithful and essentially surjective on objects. Hence or otherwise show that the category **Part** of sets and partial functions is equivalent to the category **Set**_{*} of pointed sets and basepoint-preserving functions. Are these two categories isomorphic? Justify your answer.

Define the notion of *skeletal category*. Show that if a functor between skeletal categories is part of an equivalence then it is an isomorphism. Show also that the assertion 'Every small category is equivalent to a skeletal category' is equivalent to the axiom of choice. [Hint: given a family $(A_i \mid i \in I)$ of nonempty sets, consider a suitable category whose objects are the members of the disjoint union $\prod_{i \in I} A_i$.]

2 What is meant by saying that a category is *balanced*? If $F : \mathcal{C} \to \mathcal{D}$ is a faithful functor and \mathcal{C} is balanced, prove that F reflects isomorphisms.

Let $((F: \mathcal{C} \to \mathcal{D}) \dashv (G: \mathcal{D} \to \mathcal{C}))$ be an adjunction with unit η and counit ϵ . Show that F is faithful if and only if η is a (pointwise) monomorphism. Now suppose that \mathcal{C} is balanced, and that every morphism of \mathcal{D} can be factored as a strong epimorphism followed by a monomorphism. Show that the following are equivalent:

- (i) Both η and ϵ are monomorphisms.
- (ii) F is full and faithful, and its image is closed under strong quotients in \mathcal{D} (that is, if $FA \to B$ is a strong epimorphism, then B is isomorphic to FA' for some A').

Give an example of an adjunction whose unit and counit are both monic, but whose left adjoint is not full.

UNIVERSITY OF

3

3 Define the terms *diagram*, *cone* over a diagram and *limit* of a diagram. Show that if a category has finite products and equalizers then it has all finite limits.

A functor $F: I \to J$ between small categories is called *initial* if, for every object j of J, the category $(F \downarrow j)$ is (nonempty and) connected. If F is initial, show that for any diagram $D: J \to C$ the functor which sends $(\gamma_j \mid j \in \text{ob } J)$ to $(\gamma_{Fi} \mid i \in \text{ob } I)$ is an isomorphism from the category of cones over D to that of cones over DF. Deduce that if C has limits of shape I then it also has limits of shape J, and the diagram

commutes up to isomorphism, where F^* denotes the functor $D \mapsto DF$.

Conversely, if this diagram commutes for $C = \mathbf{Set}^{\mathrm{op}}$, show that F is initial. [Consider functors of the form J(-, j).]

4 Explain briefly what is meant by a *monad*, and by an *algebra* for a monad.

Let $\mathbb{T} = (T, \eta, \mu)$ be a monad on a category \mathcal{C} with finite coproducts, and let F denote the free \mathbb{T} -algebra functor. If (A, α) and (B, β) are two \mathbb{T} -algebras, show that if the parallel pair

$$F(TA+TB) \xrightarrow{F(\alpha+\beta)} F(A+B)$$
$$\mu_{A+B}.F\kappa$$

has a coequalizer in $\mathcal{C}^{\mathbb{T}}$ (where $\kappa: TA + TB \to T(A + B)$ is the comparison map defined by $\kappa \nu_i = T\nu_i$ for i = 1, 2), then (the codomain of) the coequalizer is a coproduct $(A, \alpha) + (B, \beta)$ in $\mathcal{C}^{\mathbb{T}}$. Deduce that if \mathcal{C} has all finite colimits and T preserves reflexive coequalizers, then $\mathcal{C}^{\mathbb{T}}$ has all finite colimits. [You may assume the result that the forgetful functor $\mathcal{C}^{\mathbb{T}} \to \mathcal{C}$ creates any colimits which are preserved by T.]

CAMBRIDGE

4

5 Define the notion of *regular category*.

Let \mathcal{C} be a category with pullbacks and images. Show that, for each $f: A \to B$ in \mathcal{C} , the functor $f^*: \operatorname{Sub}_{\mathcal{C}}(B) \to \operatorname{Sub}_{\mathcal{C}}(A)$ obtained by pulling back subobjects along f has a left adjoint \exists_f , and show that the 'Frobenius reciprocity' condition

$$\exists_f (A' \cap f^*(B')) \cong \exists_f (A') \cap B$$

holds (for arbitrary subobjects $A' \rightarrow A$ and $B' \rightarrow B$) if and only if strong epimorphisms in C are stable under pullback along monomorphisms.

Let \mathcal{D} and \mathcal{E} be isomorphic copies of the category **Rng** of rings (with 1) and let \mathcal{C} be obtained from the disjoint union of \mathcal{D} and \mathcal{E} by identifying their terminal objects and then adjoining a strict initial object. Show that \mathcal{C} has finite limits and images and satisfies Frobenius reciprocity, but is not regular. [You may assume without proof that **Rng** is regular, but you should indicate any other properties of this category which are used in the argument.]

6 Explain what is meant by a *pointed category* and a *semi-additive category*.

Let \mathcal{C} be a pointed category with finite products and coproducts, in which the canonical morphism $c: A + B \to A \times B$ with matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is an isomorphism for each pair of objects (A, B). Show that \mathcal{C} has a semi-additive structure, and explain briefly why this structure is unique.

Let \mathbb{N} denote the multiplicative monoid of natural numbers (including 0), regarded as a category with one object. Show that \mathbb{N} has infinitely many semi-additive structures. [*Hint: consider the monoid automorphisms of* \mathbb{N} .]

END OF PAPER