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(a) Define what it means for π : E → M to be a vector bundle on a manifold M . Show
that the tangent bundle

TM :=
⋃

p

TpM

with natural projection π(vp) = p for vp ∈ TpM can be given the structure of a
vector bundle on M .

(b) Suppose that f : N → M is a smooth map between manifolds N and M and
π : E → M is a vector bundle on M . Show that

f∗E :=
⋃

p∈N

π−1(f(p))

with natural projection map π(vp) = p for vp ∈ Ef(p) can be given the structure of
a vector bundle on N .

(c) If π : E → M and π′ : E′ → M are vector bundles over the same manifold, define
what is meant by a bundle morphism between E and E′ over M , and what it means
for E and E′ to be isomorphic as vector bundles over M . Prove that if f : N → M

is a diffeomorphism then TN is isomorphic to f∗TM as vector bundles over N .

(d) Is it true that TM is always isomorphic to T ∗M as vector bundles over M? Is it
true that any two vector bundles on M of the same rank are isomorphic over M?
Give a proof or counterexample.
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(a) Suppose V is a real vector space and 1 6 i 6 k and 1 6 j 6 l. Denote by

Ci
j : V

∗ ⊗ · · · ⊗ V ∗

︸ ︷︷ ︸

k

⊗V ⊗ · · · ⊗ V
︸ ︷︷ ︸

l

⊗ → V ∗ ⊗ · · · ⊗ V ∗

︸ ︷︷ ︸

k−1

⊗V ⊗ · · · ⊗ V
︸ ︷︷ ︸

l−1

the contraction induced by the natural pairing between the i-th factor of V ∗ and
the j-th factor of V . Show that, for suitable vector spaces V , the Ci

j induce a map

Ci
j : T

k
l → T k−1

l−1

where T k
l denotes the space of smooth tensors of type (k, l) on a manifold M .

(b) Now suppose that D : C∞(M) → C∞(M) and D : Vect(M) → Vect(M) are R-
linear maps that satisfy

D(fY ) = f ·DY +Df · Y for f ∈ C∞(M) and Y ∈ Vect(M).

Show that D has a unique extension, that we continue to denote by D, to a map
D : T k

l → T k
l for all k, l > 0 such that

(i) D is R-linear

(ii) D(α⊗ β) = Dα⊗ β + α⊗Dβ for all α ∈ T k
l and β ∈ T k′

l′

(iii) DCi
j = Ci

jD for any contraction Ci
j : T

k
l → T k−1

l−1 .

[Hint: Start with defining D on 1-forms ω by demanding that if locally D( ∂
∂xi

) =
∑

j aij
∂

∂xj
then D(dxi) := −

∑

j aijdxj and also that D(fω) = fD(ω) +Df · ω.]

(c) Now fix X ∈ Vect(M) and A ∈ T 1
1 . For f ∈ C∞(X) and Y ∈ Vect(M) set

LX(f) = X(f) LX(Y ) = [X,Y ]
DA(f) = 0 DA(Y ) = C1

2 (A⊗ Y ).

Show that both LX and DA extend uniquely to maps T k
l → T k

l satisfying properties
(i), (ii) and (iii) from part (b).

(d) Finally prove that if X ∈ Vect(M) and f ∈ C∞(M) then

DX⊗df = fLX − LfX .
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(a) Let M be a compact connected manifold of dimension n. Define, in terms of
differential forms, what it means for M to be oriented. Prove that if M is oriented
then Hn

dR(M) is non-zero.

(b) Now suppose that f : M → M is a diffeomorphism such that f ◦ f = idM . Prove
that for all p > 0,

H
p
dR(M) = H

p
+(M)⊕H

p
−
(M)

where

H
p
+(M) := {α ∈ H

p
dR(M) : f∗α = α}

H
p
−
(M) := {α ∈ H

p
dR(M) : f∗α = −α}.

(c) Now suppose thatN is another manifold and π : M → N is a surjective smooth map,
that M is covered by open sets U such that π|U : U → π(U) is a diffeomorphism,
and

π−1(π(x)) = {x, f(x)} for all x ∈ M.

Show that π∗ induces an isomorphism

π∗ : Hp
dR(N) ≃ H

p
+(M)

for all p > 0.

(d) Using this, or otherwise, compute H
p
dR(RP

n) for all p > 0 and n > 1.

[You may use without proof that the deRham cohomology space H
p
dR(S

n) of the n-
dimensional sphere is R for p = 0, n and zero otherwise.]
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(a) Define what is meant by a linear connection ∇ on a manifold M , the curvature of
∇, and what is meant by the Levi-Civita connection associated to a Riemannian
metric g on M .

(b) Suppose that ∇i is a linear connection on a manifold Mi for i = 1, 2. Show that
there exists a linear connection ∇ on M1 ×M2 that satisfies

∇Y1+Y2
(X1 +X2) = ∇1

Y1
(X1) +∇2

Y2
(X2)

for Xi, Yi ∈ Vect(Mi), where T(p,q)(M1 ×M2) is identified with TpM1 ⊕ TqM2.

(c) Now let gi be a Riemannian metric on Mi for i = 1, 2. Show that gi induce a
Riemannian metric g on M1×M2. Show also that if ∇i is the Levi-Civita connection
for (Mi, gi) for i = 1, 2 then ∇ is the Levi-Civita connection for (M1 ×M2, g).

(d) Suppose that (Mi, gi) are locally isometric to R
n with the Euclidean metric. Show

that the curvature of the Levi-Civita connection on (M1×M2, g) vanishes identically.
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