

MATHEMATICAL TRIPOS Part III

Monday, 5 June, 2017 1:30 pm to 4:30 pm

PAPER 115

DIFFERENTIAL GEOMETRY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

(a) Define what it means for $\pi: E \to M$ to be a *vector bundle* on a manifold M. Show that the tangent bundle

 $\mathbf{2}$

$$TM := \bigcup_p T_p M$$

with natural projection $\pi(v_p) = p$ for $v_p \in T_p M$ can be given the structure of a vector bundle on M.

(b) Suppose that $f : N \to M$ is a smooth map between manifolds N and M and $\pi : E \to M$ is a vector bundle on M. Show that

$$f^*E := \bigcup_{p \in N} \pi^{-1}(f(p))$$

with natural projection map $\pi(v_p) = p$ for $v_p \in E_{f(p)}$ can be given the structure of a vector bundle on N.

- (c) If $\pi : E \to M$ and $\pi' : E' \to M$ are vector bundles over the same manifold, define what is meant by a *bundle morphism* between E and E' over M, and what it means for E and E' to be *isomorphic* as vector bundles over M. Prove that if $f : N \to M$ is a diffeomorphism then TN is isomorphic to f^*TM as vector bundles over N.
- (d) Is it true that TM is always isomorphic to T^*M as vector bundles over M? Is it true that any two vector bundles on M of the same rank are isomorphic over M? Give a proof or counterexample.

 $\mathbf{2}$

(a) Suppose V is a real vector space and $1 \leq i \leq k$ and $1 \leq j \leq l$. Denote by

$$C_j^i:\underbrace{V^*\otimes \cdots \otimes V^*}_k\otimes \underbrace{V\otimes \cdots \otimes V}_l\otimes \to \underbrace{V^*\otimes \cdots \otimes V^*}_{k-1}\otimes \underbrace{V\otimes \cdots \otimes V}_{l-1}$$

the contraction induced by the natural pairing between the *i*-th factor of V^* and the *j*-th factor of V. Show that, for suitable vector spaces V, the C_i^i induce a map

$$C_j^i: \mathcal{T}_l^k \to \mathcal{T}_{l-1}^{k-1}$$

where \mathcal{T}_l^k denotes the space of smooth tensors of type (k, l) on a manifold M.

(b) Now suppose that $D: C^{\infty}(M) \to C^{\infty}(M)$ and $D: \operatorname{Vect}(M) \to \operatorname{Vect}(M)$ are \mathbb{R} -linear maps that satisfy

$$D(fY) = f \cdot DY + Df \cdot Y$$
 for $f \in C^{\infty}(M)$ and $Y \in Vect(M)$.

Show that D has a unique extension, that we continue to denote by D, to a map $D: \mathcal{T}_l^k \to \mathcal{T}_l^k$ for all $k, l \ge 0$ such that

- (i) D is \mathbb{R} -linear
- (ii) $D(\alpha \otimes \beta) = D\alpha \otimes \beta + \alpha \otimes D\beta$ for all $\alpha \in \mathcal{T}_l^k$ and $\beta \in \mathcal{T}_{l'}^{k'}$ (iii) $DC_j^i = C_j^i D$ for any contraction $C_j^i : \mathcal{T}_l^k \to \mathcal{T}_{l-1}^{k-1}$.

[Hint: Start with defining D on 1-forms ω by demanding that if locally $D(\frac{\partial}{\partial x_i}) = \sum_j a_{ij} \frac{\partial}{\partial x_j}$ then $D(dx_i) := -\sum_j a_{ij} dx_j$ and also that $D(f\omega) = fD(\omega) + Df \cdot \omega$.]

(c) Now fix $X \in \operatorname{Vect}(M)$ and $A \in \mathcal{T}_1^1$. For $f \in C^\infty(X)$ and $Y \in \operatorname{Vect}(M)$ set

$$L_X(f) = X(f) \quad L_X(Y) = [X, Y]$$

$$D_A(f) = 0 \qquad D_A(Y) = C_2^1(A \otimes Y).$$

Show that both L_X and D_A extend uniquely to maps $\mathcal{T}_l^k \to \mathcal{T}_l^k$ satisfying properties (i), (ii) and (iii) from part (b).

(d) Finally prove that if $X \in Vect(M)$ and $f \in C^{\infty}(M)$ then

$$D_{X\otimes df} = fL_X - L_{fX}.$$

Part III, Paper 115

UNIVERSITY OF

- 3
- (a) Let M be a compact connected manifold of dimension n. Define, in terms of differential forms, what it means for M to be *oriented*. Prove that if M is oriented then $H^n_{dB}(M)$ is non-zero.
- (b) Now suppose that $f: M \to M$ is a diffeomorphism such that $f \circ f = id_M$. Prove that for all $p \ge 0$,

$$H^p_{dR}(M) = H^p_+(M) \oplus H^p_-(M)$$

where

$$H^{p}_{+}(M) := \{ \alpha \in H^{p}_{dR}(M) : f^{*}\alpha = \alpha \}$$

$$H^{p}_{-}(M) := \{ \alpha \in H^{p}_{dR}(M) : f^{*}\alpha = -\alpha \}.$$

(c) Now suppose that N is another manifold and $\pi : M \to N$ is a surjective smooth map, that M is covered by open sets U such that $\pi|_U : U \to \pi(U)$ is a diffeomorphism, and

$$\pi^{-1}(\pi(x)) = \{x, f(x)\} \text{ for all } x \in M.$$

Show that π^* induces an isomorphism

$$\pi^*: H^p_{dR}(N) \simeq H^p_+(M)$$

for all $p \ge 0$.

(d) Using this, or otherwise, compute $H^p_{dR}(\mathbb{RP}^n)$ for all $p \ge 0$ and $n \ge 1$.

[You may use without proof that the deRham cohomology space $H^p_{dR}(S^n)$ of the ndimensional sphere is \mathbb{R} for p = 0, n and zero otherwise.] $\mathbf{4}$

- (a) Define what is meant by a *linear connection* ∇ on a manifold M, the *curvature* of ∇ , and what is meant by the *Levi-Civita* connection associated to a Riemannian metric g on M.
- (b) Suppose that ∇^i is a linear connection on a manifold M_i for i = 1, 2. Show that there exists a linear connection ∇ on $M_1 \times M_2$ that satisfies

$$\nabla_{Y_1+Y_2}(X_1+X_2) = \nabla^1_{Y_1}(X_1) + \nabla^2_{Y_2}(X_2)$$

for $X_i, Y_i \in \text{Vect}(M_i)$, where $T_{(p,q)}(M_1 \times M_2)$ is identified with $T_pM_1 \oplus T_qM_2$.

- (c) Now let g_i be a Riemannian metric on M_i for i = 1, 2. Show that g_i induce a Riemannian metric g on $M_1 \times M_2$. Show also that if ∇^i is the Levi-Civita connection for (M_i, g_i) for i = 1, 2 then ∇ is the Levi-Civita connection for $(M_1 \times M_2, g)$.
- (d) Suppose that (M_i, g_i) are locally isometric to \mathbb{R}^n with the Euclidean metric. Show that the curvature of the Levi-Civita connection on $(M_1 \times M_2, g)$ vanishes identically.

END OF PAPER