MATHEMATICAL TRIPOS Part III

Friday, 2 June, 2017 1:30 pm to 4:30 pm

PAPER 114

ALGEBRAIC TOPOLOGY

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

For a continuous map $f: X \to X$, let $T_f = (X \times [0,1]) / \sim$, where $(x,0) \sim (f(x),1)$. Show that there is a long exact sequence

$$\longrightarrow H_n(X;\mathbb{Z}) \xrightarrow{id-f_*} H_n(X;\mathbb{Z}) \longrightarrow H_n(T_f;\mathbb{Z}) \longrightarrow H_{n-1}(X;\mathbb{Z}) \xrightarrow{id-f_*} H_{n-1}(X;\mathbb{Z}) \longrightarrow .$$

An invertible 2×2 matrix A with integer entries gives a homeomorphism of \mathbb{R}^2 which preserves \mathbb{Z}^2 , and hence defines a homeomorphism f_A of the torus $X = \mathbb{R}^2/\mathbb{Z}^2$. Show that the map $(f_A)_* : H_1(X;\mathbb{Z}) \to H_1(X;\mathbb{Z})$ is given by the matrix A, with respect to a basis which you should describe. Show that the map $(f_A)_* : H_2(X;\mathbb{Z}) \to H_2(X;\mathbb{Z})$ is given by multiplication by det(A). Hence compute the integral homology groups of T_{f_A} when

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

$\mathbf{2}$

Without using cellular homology, carefully calculate the integral homology of S^n , making clear all results which you use. Let $f: S^n \to S^n$ be a continuous map. What is the *degree* of the map f? What is the *local degree* of the map f at a point $x_0 \in S^n$, and when is it defined? State and prove a result expressing the degree of f in terms of local degrees.

3

Define the canonical 1-dimensional real vector bundle $\pi : \gamma_{1,n}^{\mathbb{R}} \to \mathbb{RP}^n$, and prove that it is locally trivial. Describe the Gysin sequence associated to an \mathbb{R} -oriented vector bundle. Hence compute the cohomology ring $H^*(\mathbb{RP}^n; \mathbb{F}_2)$.

If $f: S^n \to S^m$ is a continuous map such that f(-x) = -f(x), show that $n \leq m$.

If $g: S^n \times S^n \to S^n$ is a continuous map such that g(-x, y) = -g(x, y) = g(x, -y), show that $n = 2^k - 1$ for some integer k.

$\mathbf{4}$

Compute the effect of the inclusion map $i : \mathbb{RP}^2 \to \mathbb{CP}^2$ on \mathbb{F}_2 -cohomology. By considering the pair $(\mathbb{CP}^{2k}, \mathbb{CP}^{2k} \setminus \mathbb{RP}^{2k})$, show that $\mathbb{CP}^{2k} \setminus \mathbb{RP}^{2k}$ has the same \mathbb{F}_2 -cohomology ring as $\mathbb{CP}^{k-1} \times S^{2k}$. State carefully all results which you use.

UNIVERSITY OF

 $\mathbf{5}$

Let \mathbb{F} be a field. State the Poincaré duality theorem for a compact \mathbb{F} -oriented manifold M, and prove that it provides a non-singular bilinear form on $H^*(M; \mathbb{F})$.

Let W_g be a manifold obtained as the connect-sum of g copies of $S^{2n+1} \times S^{2n+1}$. Compute the integral cohomology ring of W_g , stating carefully all results which you use. If $f: W_g \to W_g$ is a smooth orientation preserving map such that $f \circ f = id_{W_g}$, and whose fixed points form a discrete set Fix(f), show that

$$\#\operatorname{Fix}(f) \equiv 2 - 2g \mod 4.$$

[You may assume that under the stated conditions on f one has $det(I - D_x f) > 0$ for all $x \in Fix(f)$. You may use that a finite dimensional real vector space which admits a non-singular skew-symmetric bilinear form is even dimensional.]

END OF PAPER