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1

Let α : A → B be a ring homomorphism and let f : X = Spec B → Y = Spec A be
the induced morphism of schemes.

(i) Let φ : OY → f∗OX be the morphism on sheaves induced by α. Show that α is
injective if and only if φ is injective.

(ii) Find an example in which α is not injective but f is a homeomorphism with
respect to the Zariski topology.

(iii) Show that if X and Y are integral and if f is surjective, then the generic fibre
of f is a non-empty integral scheme. [The generic fibre is the fibre of f over the generic
point of Y .]

(iv) Find an example in which X is integral and there is y ∈ Y such that the fibre
of f over y is not reduced.

2

Let X be a scheme and let I be a quasi-coherent ideal sheaf on X.

(i) Explain carefully the construction of the closed subscheme of X associated to I.

(ii) Show that there is no example in which X is Noetherian and reduced and I is
locally free of rank two. [Hint: First consider the case where X is irreducible; next reduce

the problem to this case.]

3

(i) Let X be an integral scheme. Show that each invertible sheaf L on X is
isomorphic to OX(D) for some Cartier divisor D on X.

(ii) Let X be a scheme and let L be an invertible sheaf on X. We say L is generated
by global sections if for each point x ∈ X there is s ∈ L(X) such that (X, s) generates Lx

as an Ox-module. Show that if L is generated by global sections, then L ⊗OX
L is also

generated by global sections.

4

(i) Let X be a topological space and let F be a flasque sheaf on X. Show that
H i(X,F) = 0 for every i > 0.

(ii) Let P
1
C
= Proj C[t0, t1]. Consider the open subscheme D+(t0) ⊂ P

1
C
and the

inclusion morphism f : D+(t0) → P
1
C
. Show that if G is a quasi-coherent sheaf on D+(t0),

then H i(P1
C
, f∗G) = 0 for every i > 0.
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5

Let S = C[t0, . . . , t4] and let P4
C
= Proj S. Let Fj ∈ S be a homogeneous polynomial

of degree dj > 0, for j = 1, 2, 3. Consider the ideals

I1 = 〈F1〉, I2 = 〈F1, F2〉, I3 = 〈F1, F2, F3〉

in S. Assume that for j = 1, 2 we have the following property:

if G ∈ S is homogeneous and if GFj+1 ∈ Ij , then G ∈ Ij.

Let Xj be the closed subscheme of P4
C
defined by the ideal sheaf Ĩj . Calculate H

0(Xj ,OXj
)

for j = 1, 2, 3.

[Hint: Consider the exact sequences

0 → Ij/Ij−1 → S/Ij−1 → S/Ij → 0

where we put I0 = 0.]
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