MATHEMATICAL TRIPOS Part III

Wednesday, 7 June, 2017 $\,$ 1:30 pm to 4:30 pm

PAPER 113

ALGEBRAIC GEOMETRY

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight. Throughout this paper, rings are commutative with element 1.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let $\alpha \colon A \to B$ be a ring homomorphism and let $f \colon X = \text{Spec } B \to Y = \text{Spec } A$ be the induced morphism of schemes.

 $\mathbf{2}$

(i) Let $\phi: \mathcal{O}_Y \to f_*\mathcal{O}_X$ be the morphism on sheaves induced by α . Show that α is injective if and only if ϕ is injective.

(ii) Find an example in which α is not injective but f is a homeomorphism with respect to the Zariski topology.

(iii) Show that if X and Y are integral and if f is surjective, then the generic fibre of f is a non-empty integral scheme. [The generic fibre is the fibre of f over the generic point of Y.]

(iv) Find an example in which X is integral and there is $y \in Y$ such that the fibre of f over y is not reduced.

$\mathbf{2}$

Let X be a scheme and let \mathcal{I} be a quasi-coherent ideal sheaf on X.

(i) Explain carefully the construction of the closed subscheme of X associated to \mathcal{I} .

(ii) Show that there is no example in which X is Noetherian and reduced and \mathcal{I} is locally free of rank two. [*Hint: First consider the case where X is irreducible; next reduce the problem to this case.*]

3

(i) Let X be an integral scheme. Show that each invertible sheaf \mathcal{L} on X is isomorphic to $\mathcal{O}_X(D)$ for some Cartier divisor D on X.

(ii) Let X be a scheme and let \mathcal{L} be an invertible sheaf on X. We say \mathcal{L} is generated by global sections if for each point $x \in X$ there is $s \in \mathcal{L}(X)$ such that (X, s) generates \mathcal{L}_x as an \mathcal{O}_x -module. Show that if \mathcal{L} is generated by global sections, then $\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{L}$ is also generated by global sections.

4

(i) Let X be a topological space and let \mathcal{F} be a flasque sheaf on X. Show that $H^i(X, \mathcal{F}) = 0$ for every i > 0.

(ii) Let $\mathbb{P}^1_{\mathbb{C}} = \operatorname{Proj} \mathbb{C}[t_0, t_1]$. Consider the open subscheme $D_+(t_0) \subset \mathbb{P}^1_{\mathbb{C}}$ and the inclusion morphism $f: D_+(t_0) \to \mathbb{P}^1_{\mathbb{C}}$. Show that if \mathcal{G} is a quasi-coherent sheaf on $D_+(t_0)$, then $H^i(\mathbb{P}^1_{\mathbb{C}}, f_*\mathcal{G}) = 0$ for every i > 0.

UNIVERSITY OF

 $\mathbf{5}$

Let $S = \mathbb{C}[t_0, \ldots, t_4]$ and let $\mathbb{P}^4_{\mathbb{C}} = \operatorname{Proj} S$. Let $F_j \in S$ be a homogeneous polynomial of degree $d_j > 0$, for j = 1, 2, 3. Consider the ideals

$$I_1 = \langle F_1 \rangle, \ I_2 = \langle F_1, F_2 \rangle, \ I_3 = \langle F_1, F_2, F_3 \rangle$$

in S. Assume that for j = 1, 2 we have the following property:

if
$$G \in S$$
 is homogeneous and if $GF_{j+1} \in I_j$, then $G \in I_j$.

Let X_j be the closed subscheme of $\mathbb{P}^4_{\mathbb{C}}$ defined by the ideal sheaf \tilde{I}_j . Calculate $H^0(X_j, \mathcal{O}_{X_j})$ for j = 1, 2, 3.

[Hint: Consider the exact sequences

$$0 \to I_j/I_{j-1} \to S/I_{j-1} \to S/I_j \to 0$$

where we put $I_0 = 0.$]

END OF PAPER