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1

Let A = {A1, . . . , An} be a finite family of measurable subsets of [0, 1], and let
b1, . . . , bn be positive reals. Show that there are disjoint measurable sets B1, . . . , Bn with
Bi ⊂ Ai having measure λ(Bi) = bi if and only if

λ
(

⋃

i∈I

Ai

)

>
∑

i∈I

bi

for all subsets I of [n].

2

(i) State and prove the Erdős–Ko–Rado Theorem.

(ii) Two set systems, A and B, are called cross-intersecting if A∩B 6= ∅ whenever A ∈ A
and B ∈ B. Show that there is a function f : N × N → N such that if A ⊂ N

(6r) and
B ⊂ N

(6s) are cross-intersecting then there is a set X of at most f(r, s) elements such that
A ∩B ∩X 6= ∅ for all A ∈ A and B ∈ B.

3

(i) State and prove Harris’s Lemma. If you deduce it from the Four Functions
Theorem, you should prove that first.

(ii) Let A and B be non-empty cross-Sperner families of subsets of [n], meaning that A
and B are such that if A ∈ A and B ∈ B then neither A ⊂ B nor B ⊂ A. [In particular,
A ∩ B = ∅.] Show that

|A|1/2 + |B|1/2 6 2n/2.

(iii) Show that for 1 6 k < 2k 6 n there are cross-Sperner families A,B ⊂ P(n) such that

|A| = 2−2k2n and |B| =
(

1− 2−k
)2

2n.

[Hint. For K ⊂ [n], consider subsets of [n] containing K, not containing K, meeting
K and not meeting K.]

4

Let 0 6 ℓ1 < · · · < ℓs < r < n be integers, L = {ℓ1, . . . , ℓs}, and let
{A1, . . . , Am} ⊂ [n](r) be an L-intersecting family (i.e. |Ai∩Aj | ∈ L for all 1 6 i < j 6 m).
Show that m 6

(n
s

)

.
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