

MATHEMATICAL TRIPOS Part III

Monday, 5 June, 2017 1:30 pm to 3:30 pm

PAPER 109

COMBINATORICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let $\mathcal{A} = \{A_1, \ldots, A_n\}$ be a finite family of measurable subsets of [0, 1], and let b_1, \ldots, b_n be positive reals. Show that there are disjoint measurable sets B_1, \ldots, B_n with $B_i \subset A_i$ having measure $\lambda(B_i) = b_i$ if and only if

$$\lambda \big(\bigcup_{i \in I} A_i\big) \geq \sum_{i \in I} b_i$$

for all subsets I of [n].

$\mathbf{2}$

(i) State and prove the Erdős–Ko–Rado Theorem.

(ii) Two set systems, \mathcal{A} and \mathcal{B} , are called *cross-intersecting* if $A \cap B \neq \emptyset$ whenever $A \in \mathcal{A}$ and $B \in \mathcal{B}$. Show that there is a function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that if $\mathcal{A} \subset \mathbb{N}^{(\leq r)}$ and $\mathcal{B} \subset \mathbb{N}^{(\leq s)}$ are cross-intersecting then there is a set X of at most f(r, s) elements such that $A \cap B \cap X \neq \emptyset$ for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

3

(i) State and prove Harris's Lemma. If you deduce it from the Four Functions Theorem, you should prove that first.

(ii) Let \mathcal{A} and \mathcal{B} be non-empty cross-Sperner families of subsets of [n], meaning that \mathcal{A} and \mathcal{B} are such that if $A \in \mathcal{A}$ and $B \in \mathcal{B}$ then neither $A \subset B$ nor $B \subset A$. [In particular, $\mathcal{A} \cap \mathcal{B} = \emptyset$.] Show that

$$|\mathcal{A}|^{1/2} + |\mathcal{B}|^{1/2} \leq 2^{n/2}.$$

(iii) Show that for $1 \leq k < 2k \leq n$ there are cross-Sperner families $\mathcal{A}, \mathcal{B} \subset \mathcal{P}(n)$ such that $|\mathcal{A}| = 2^{-2k}2^n$ and $|\mathcal{B}| = (1 - 2^{-k})^2 2^n$.

[Hint. For $K \subset [n]$, consider subsets of [n] containing K, not containing K, meeting K and not meeting K.]

4

Let $0 \leq \ell_1 < \cdots < \ell_s < r < n$ be integers, $L = \{\ell_1, \ldots, \ell_s\}$, and let $\{A_1, \ldots, A_m\} \subset [n]^{(r)}$ be an *L*-intersecting family (i.e. $|A_i \cap A_j| \in L$ for all $1 \leq i < j \leq m$). Show that $m \leq \binom{n}{s}$.

Part III, Paper 109

3

END OF PAPER

Part III, Paper 109