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1

Define unique ergodicity.

Prove that irrational circle rotations are uniquely ergodic.

Let (X,T ) be a uniquely ergodic system with unique invariant measure µ. Let
f ∈ C(X). Prove that for all x ∈ X, we have

lim
N→∞

1

N

N−1
∑

n=0

f(T nx) =

∫

fdµ.

[You may use without proof the fact that averages of the pushforwards of a measure
along orbit segments converge to an invariant measure.]

Denote by S the set of integers n ∈ Z>0 such that the first digit of 2n in its decimal
expansion is 7. Prove that

lim
N→∞

|S ∩ [0, N − 1]|

N
=

log 8− log 7

log 10
.

2

Define mixing, convergence in density and weak mixing.

Explain how the measure preserving system called the Chacón map is constructed.

[You do not need to prove that the map is well defined and measure preserving.]

Let (X,B, µ, T ) be a measure preserving system, let f ∈ L2(X,µ) and suppose that

lim
n→∞

〈Un
T f, f〉 =

∣

∣

∣

∫

fdµ
∣

∣

∣

2

.

Prove that

lim
n→∞

〈Un
T f, g〉 =

∫

fdµ ·

∫

ḡdµ

holds for all g ∈ L2(X,µ). (Recall UT f = f ◦ T .)

[Hint: first prove the claim when g = Uk
T f for some k ∈ Z>0.]

Prove that a measure preserving system (X,B, µ, T ) is mixing if and only if

lim
n→∞

µ(T−nA ∩A) = µ(A)2

holds for all A ∈ B.
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Define entropy of a measure preserving system (include the definition of it with
respect to a partition).

Prove that
hµ(T, ξ) = lim

n→∞

Hµ(ξ|ξ
n
1
).

State the Kolmogorov-Sinai theorem.

Calculate the entropy of Bernoulli shifts.

Let (X,B, µ, T ) be an invertible measure preserving system and let ξ ⊂ B be a finite
partition. Suppose that for every ε > 0 and for every set A ∈ B, there is a number n ∈ Z>0

and there is B ∈ B(ξn−1

0
) such that µ(A△B) < ε. (A partition with this property is called

a one-sided generator.) Prove that hµ(T ) = 0.

[You may use without proof any result contained in the lectures or in the example
sheets.]

4

Let (X,B, µ, T ) be a measure preserving system. Suppose that hµ(T, ξ) > 0 for all
finite partitions ξ ⊂ B that satisfy Hµ(ξ) > 0. Prove that the tail σ-algebra T (ξ) is trivial
for all finite partitions ξ ⊂ B.
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