MATHEMATICAL TRIPOS Part III

Friday, 2 June, 2017 $\,$ 9:00 am to 12:00 pm

PAPER 108

TOPICS IN ERGODIC THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Define *unique ergodicity*.

Prove that irrational circle rotations are uniquely ergodic.

Let (X,T) be a uniquely ergodic system with unique invariant measure μ . Let $f \in C(X)$. Prove that for all $x \in X$, we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} f(T^n x) = \int f d\mu.$$

[You may use without proof the fact that averages of the pushforwards of a measure along orbit segments converge to an invariant measure.]

Denote by S the set of integers $n \in \mathbb{Z}_{\geq 0}$ such that the first digit of 2^n in its decimal expansion is 7. Prove that

$$\lim_{N \to \infty} \frac{|S \cap [0, N - 1]|}{N} = \frac{\log 8 - \log 7}{\log 10}.$$

 $\mathbf{2}$

Define mixing, convergence in density and weak mixing.

Explain how the measure preserving system called the Chacón map is constructed. [You do not need to prove that the map is well defined and measure preserving.] Let (X, \mathcal{B}, μ, T) be a measure preserving system, let $f \in L^2(X, \mu)$ and suppose that

$$\lim_{n \to \infty} \langle U_T^n f, f \rangle = \Big| \int f d\mu \Big|^2.$$

Prove that

$$\lim_{n \to \infty} \langle U_T^n f, g \rangle = \int f d\mu \cdot \int \bar{g} d\mu$$

holds for all $g \in L^2(X, \mu)$. (Recall $U_T f = f \circ T$.)

[Hint: first prove the claim when $g = U_T^k f$ for some $k \in \mathbb{Z}_{\geq 0}$.]

Prove that a measure preserving system (X, \mathcal{B}, μ, T) is mixing if and only if

$$\lim_{n \to \infty} \mu(T^{-n}A \cap A) = \mu(A)^2$$

holds for all $A \in \mathcal{B}$.

UNIVERSITY OF

3

Define *entropy* of a measure preserving system (include the definition of it *with* respect to a partition).

Prove that

$$h_{\mu}(T,\xi) = \lim_{n \to \infty} H_{\mu}(\xi|\xi_1^n).$$

State the Kolmogorov-Sinai theorem.

Calculate the entropy of Bernoulli shifts.

Let (X, \mathcal{B}, μ, T) be an invertible measure preserving system and let $\xi \subset \mathcal{B}$ be a finite partition. Suppose that for every $\varepsilon > 0$ and for every set $A \in \mathcal{B}$, there is a number $n \in \mathbb{Z}_{\geq 0}$ and there is $B \in \mathcal{B}(\xi_0^{n-1})$ such that $\mu(A \triangle B) < \varepsilon$. (A partition with this property is called a one-sided generator.) Prove that $h_{\mu}(T) = 0$.

[You may use without proof any result contained in the lectures or in the example sheets.]

$\mathbf{4}$

Let (X, \mathcal{B}, μ, T) be a measure preserving system. Suppose that $h_{\mu}(T, \xi) > 0$ for all finite partitions $\xi \subset \mathcal{B}$ that satisfy $H_{\mu}(\xi) > 0$. Prove that the tail σ -algebra $\mathcal{T}(\xi)$ is trivial for all finite partitions $\xi \subset \mathcal{B}$.

END OF PAPER