MATHEMATICAL TRIPOS Part III

Monday, 12 June, 2017 $\,$ 9:00 am to 12:00 pm

PAPER 107

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

- 2
- 1 Let Ω be a bounded domain in \mathbb{R}^n .
 - (a) Let $L = a^{ij}D_{ij} + b^iD_i + c$ be an elliptic operator on Ω . Giving the additional hypotheses needed, state and prove the weak maximum principle for a function $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfying $Lu \ge 0$ in Ω .
 - (b) If $w \in C^{\infty}(\Omega) \cap C^{1}(\overline{\Omega})$ is harmonic in Ω , show that

$$\sup_{\Omega} |Dw| = \sup_{\partial \Omega} |Dw|.$$

(c) If $v \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfies $\Delta v = v^3 - v$ in Ω , and if $\sup_{\partial \Omega} |v| < 1$, show that $\sup_{\Omega} |v| \leq 1$.

$\mathbf{2}$

(a) Let $L = a^{ij}D_{ij} + b^iD_i$ be an elliptic operator on a domain $\Omega \subset \mathbb{R}^n$, and let $y \in \partial \Omega$. Giving the additional hypotheses needed, state and prove the Hopf boundary point lemma for a function $u \in C^2(\Omega) \cap C^0(\Omega \cup \{y\})$ satisfying $Lu \ge 0$ in Ω and u(y) > u(x) for all $x \in \Omega$.

[You may use without proof the weak maximum principle.]

(b) Let $\Omega \subset \mathbb{R}^n$ be a domain and let $v \in C^1(\Omega)$ be non-positive. Let $Z = \{x \in \Omega : v(x) = 0\}$. Use the Hopf boundary point lemma to show that if $v \in C^2(\Omega \setminus Z)$ and satisfies $\Delta v + v = 0$ in $\Omega \setminus Z$, then either v(x) = 0 for every $x \in \Omega$ or v(x) < 0 for every $x \in \Omega$.

Give an example to show that this conclusion does not hold if in place of the hypothesis $v \in C^1(\Omega)$ it is assumed that v is locally Lipschitz in Ω , and all other hypotheses are kept unchanged.

UNIVERSITY OF

3 Let $\alpha \in (0,1)$ and let Ω be a bounded $C^{2,\alpha}$ domain in \mathbb{R}^n . Let $c \in C^{0,\alpha}(\overline{\Omega})$.

(a) State without proof the global Schauder estimate satisfied by a function $u \in C^{2,\alpha}(\overline{\Omega})$ solving the Dirichlet problem

$$\begin{array}{l} \Delta \, u + c u = f \, \text{in } \Omega, \\ u = \psi \, \text{on } \partial \, \Omega \end{array} \tag{(\star)}$$

where $f \in C^{0,\alpha}(\overline{\Omega})$ and $\psi \in C^{2,\alpha}(\overline{\Omega})$.

If $c \leq 0$ in Ω , use the weak maximum principle to show that

$$\sup_{\Omega} |u| \leqslant \sup_{\partial \Omega} |\psi| + C \sup_{\Omega} |f|$$

for some constant C depending only on Ω .

[Hint: Choose d > 0 such that $\Omega \subset \{-d < x_1 < d\}$ and consider the function $v = \sup_{\partial \Omega} |\psi| + (e^{2d} - e^{x_1 + d}) \sup_{\Omega} |f|.$]

(b) State and prove the Fredholm alternative concerning solvability for $u \in C^{2,\alpha}(\overline{\Omega})$ of the Dirichlet problem (\star) for given functions $f \in C^{0,\alpha}(\overline{\Omega})$ and $\psi \in C^{2,\alpha}(\overline{\Omega})$.

[You may use without proof any theorem from abstract functional analysis and any standard existence theorem for solutions to elliptic equations.]

(c) Show that there exists a constant $\epsilon = \epsilon(\Omega) > 0$ such that if $c(x) \leq \epsilon$ for all $x \in \Omega$, then for any given $f \in C^{0,\alpha}(\overline{\Omega})$ and $\psi \in C^{2,\alpha}(\overline{\Omega})$, the Dirichlet problem (*) has a unique solution $u \in C^{2,\alpha}(\overline{\Omega})$.

UNIVERSITY OF

4 Let $B_1(0)$ be the open unit ball in \mathbb{R}^n and let $\alpha \in (0,1)$. Show that for each $\delta \in (0,1)$, there is a constant $C = C(n,\alpha,\delta) \in (0,\infty)$ such that if $u \in C^{2,\alpha}(\overline{B_1(0)})$ is a solution to $\Delta u = f$ in $B_1(0)$ for some $f \in C^{0,\alpha}(\overline{B_1(0)})$, then

$$[D^{2}u]_{\alpha; B_{1/2}(0)} \leq \delta[D^{2}u]_{\alpha; B_{1}(0)} + C\left(|u|_{2; B_{1}(0)} + |f|_{0,\alpha; B_{1}(0)}\right).$$

[You may use without proof Liouville's Theorem: there does not exist a non-constant harmonic function w on \mathbb{R}^n such that $[w]_{\alpha;\mathbb{R}^n} < \infty$.]

Explain briefly how to deduce from the above result that there is a constant $C = C(n, \alpha)$ such that, for u and f as above,

$$[D^2 u]_{\alpha; B_{1/2}(0)} \leqslant C \left(|u|_{2; B_1(0)} + |f|_{0,\alpha; B_1(0)} \right). \tag{*}$$

[You are not required to give proofs of any additional results needed.]

Give an example to show that the estimate (\star) cannot be improved to

$$[D^2 u]_{\alpha; B_{1/2}(0)} \leq C \left(|u|_{2; B_1(0)} + |f|_{0; B_1(0)} \right)$$

for some constant $C = C(n, \alpha)$.

CAMBRIDGE

5 Let $B_1(0)$ be the open unit ball in \mathbb{R}^n , and let $a^{ij} \in L^{\infty}(B_1(0))$ be such that $||a^{ij}||_{L^{\infty}(B_1(0))} \leq \Lambda$ and $a^{ij}(x)\zeta^i\zeta^j \geq \lambda|\zeta|^2$ for some constants $\Lambda \geq \lambda > 0$, all $\zeta \in \mathbb{R}^n$ and a.e. $x \in B_1(0)$. Let $Lu = D_i(a^{ij}D_ju)$.

- (a) Let $u \in W^{1,2}(B_1(0))$ be a non-negative weak supersolution of Lu = 0 in $B_1(0)$. State without proof the *weak Harnack inequality* giving a lower bound for $\inf_{B_{1/2}(0)} u$.
- (b) Let $u \in W^{1,2}(B_1(0))$ be a weak solution of Lu = 0 in $B_1(0)$. Assuming that $u \in L^{\infty}(B_1(0))$, use the estimate in (a) to show that $u \in C^{0,\mu}(\overline{B_{1/4}(0)})$, and that

$$\sup_{x,y\in B_{1/4}(0),\ x\neq y} \frac{|u(x)-u(y)|}{|x-y|^{\mu}} \leqslant C \|u\|_{L^{\infty}(B_{1}(0))}$$

for some constants $\mu \in (0,1)$ and C > 0 depending only on n, λ and Λ .

(c) Let $u_k \in W^{1,2}(B_1(0)) \cap C^0(\overline{B_1(0)})$ be a non-zero weak solution of Lu = 0 in $B_1(0)$ for each $k = 1, 2, 3, \ldots$. Show that there is a function $v \in W^{1,2}_{\text{loc}}(B_1(0)) \cap C^0(B_{1/4}(0))$ satisfying Lv = 0 weakly in $B_{\theta}(0)$ for every $\theta \in (0, 1)$ and a subsequence $u_{k'}$ such that

$$\frac{u_{k'}}{\left(\sup_{B_1(0)} |u_{k'}|\right)} \to v$$

uniformly on $B_{1/4}(0)$ as $k' \to \infty$.

[Hint: Show first that $\int |Du_k|^2 \varphi^2 \leq C \int |u_k|^2 |D\varphi|^2$ for some constant C independent of k and any $\varphi \in C_c^1(B_1(0))$.]

UNIVERSITY OF

6

(a) Let $B_1(0)$ be the open unit ball in \mathbb{R}^n and let $Lu = D_i(a^{ij}D_ju)$ where $a^{ij} \in L^{\infty}(B_1(0)), ||a^{ij}||_{L^{\infty}(B_1(0))} \leq \Lambda$ and $a^{ij}(x)\zeta^i\zeta^j \geq \lambda|\zeta|^2$ for some constants $\Lambda \geq \lambda > 0$, all $\zeta \in \mathbb{R}^n$ and a.e. $x \in B_1(0)$. Let $u \in W^{1,2}(B_1(0)) \cap L^{\infty}(B_1(0))$ and suppose that u is a non-negative weak subsolution of Lu = 0 in $B_1(0)$.

6

Show that

$$\int_{B_1(0)} |Du|^2 u^{\alpha - 2} \eta^2 \leqslant \frac{C}{(\alpha - 1)^2} \int_{B_1(0)} u^{\alpha} |D\eta|^2$$

for each $\alpha > 1$ and $\eta \in C_c^1(B_1(0))$, where $C = C(\lambda, \Lambda)$.

For $n \ge 3$, the Sobolev inequality says that

$$\left(\int_{B_1(0)} f^{2\sigma}\right)^{\frac{1}{\sigma}} \leqslant C \int_{B_1(0)} |Df|^2$$

for every $f \in W_0^{1,2}(B_1(0))$, where $\sigma = \frac{n}{n-2}$ and C = C(n). Use the Sobolev inequality and the above estimate to show that for $n \ge 3$, $0 < r < R \le 1$ and any p > 1,

$$\left(\int_{B_r(0)} u^{\sigma\alpha}\right)^{\frac{1}{\sigma\alpha}} \leqslant \frac{C^{\frac{1}{\alpha}}}{(R-r)^{\frac{2}{\alpha}}} \left(\int_{B_R(0)} u^{\alpha}\right)^{\frac{1}{\alpha}}$$

for any $\alpha \ge p$, where $C = C(n, p, \lambda, \Lambda)$.

Deduce that for $n \ge 3$ and any p > 1,

$$||u||_{L^{\infty}(B_{1/2}(0))} \leq C ||u||_{L^{p}(B_{1}(0))}$$

for some constant $C = C(n, p, \lambda, \Lambda)$.

(b) Let $n \ge 3$ and now suppose that $a^{ij} \in L^{\infty}(\mathbb{R}^n)$, $||a^{ij}||_{L^{\infty}(\mathbb{R}^n)} \le \Lambda$ and that $a^{ij}(x)\zeta^i\zeta^j \ge \lambda|\zeta|^2$ for some constants $\Lambda \ge \lambda > 0$, all $\zeta \in \mathbb{R}^n$ and a.e. $x \in \mathbb{R}^n$. Let $Lu = D_i(a^{ij}D_ju)$. If $u \in W^{1,2}_{\text{loc}}(\mathbb{R}^n) \cap L^{\infty}_{\text{loc}}(\mathbb{R}^n)$, $u \ge 0$ and u is a weak subsolution of Lu = 0 in $B_R(0)$ for every R > 0, and if $\int_{\mathbb{R}^n} u^p < \infty$ for some p > 1, show that $u \equiv 0$ in \mathbb{R}^n .

END OF PAPER