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SECTION A

1

State the Hahn–Banach theorem on the extension of bounded linear functionals.
Use it to prove that for a normed space X and for any non-zero x ∈ X there exists f ∈ X∗

with ‖f‖ = 1 and f(x) = ‖x‖. Deduce that X embeds isometrically into X∗∗.

Let X be a normed space. Let Γ be an arbitrary set, and let ℓ∞(Γ) be the Banach
space of bounded real-valued functions on Γ with the supremum norm. Prove that a
map T : X → ℓ∞(Γ) is a bounded linear operator if and only if there is a bounded set
{fγ | γ ∈ Γ} ⊂ X∗ such that Tx = (fγx)γ∈Γ, and in this case ‖T‖ = supγ∈Γ‖fγ‖.

Prove that for any normed space X there is a set Γ and an isometric embedding
T : X → ℓ∞(Γ). Show that if X is separable or if X is the dual of a separable space, then
one can take Γ = N.

Given λ > 1, we say a normed space X is λ-injective if whenever Y is a subspace
of a normed space Z and T ∈ B(Y,X), there exists T̃ ∈ B(Z,X) such that T̃ ↾Y = T and
‖T̃‖ 6 λ‖T‖. Prove that ℓ∞(Γ) is 1-injective for any set Γ.

Given λ > 1, prove that X is λ-injective if and only if whenever T : X → Z is an
isometric embedding, there is a bounded linear map P : Z → X such that ‖P‖ 6 λ and
P ◦T is the identity on X. [Hint: for the “only if” part consider Y = T (X) and a suitable

map Y → X; for the “if” part first embed X isometrically into some ℓ∞(Γ).]
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2

(a) Define the weak topology of a normed space. State and prove Mazur’s theorem.
[Any version of the Hahn–Banach theorem can be used without proof.] Define what
it means for a subset of a normed space to be weakly bounded. Prove that a weakly
bounded set is bounded in norm. Deduce that every weakly compact set is bounded
in norm.

Let X be a Banach space. Prove that X is reflexive if and only if the closed unit
ball BX is weakly compact. [You may use without proof any results about the
w∗-topology of a dual space provided you clearly state them.]

Let X be a Banach space. Assume that the closed unit ball BX∗ of X∗ contains
a countable subset {fn | n ∈ N} that separates the points of X. Prove that the
weak topology on any weakly compact subset of X is metrizable. [You don’t need
to check all properties of a metric.]

(b) Using the results in part (a), prove the following.

(i) Let (fn) be a sequence in C[0, 1] that converges weakly to zero. Prove that
fn converges to zero in L1[0, 1] (in the L1-norm).

(ii) Let X be a reflexive Banach space and C a non-empty, closed, convex subset
of X. Show that there exists x ∈ C such that ‖x‖ = infy∈C‖y‖.

(iii) Prove that a weakly compact subset of ℓ∞ is norm-separable.

3

Define the w∗-topology on the dual space of a normed space. Show that if X is an
infinite-dimensional Banach space, then the w∗-topology on X∗ is not metrizable. [Hint:
Prove that if there are w∗-neighbourhoods Un, n ∈ N, of 0 in X∗ such that every w∗-

neighbourhood V of 0 contains Un for some n, then X has a countable basis. You may use

elementary results from linear algebra without proof.]

State and prove the theorems of Banach–Alaoglu and Goldstein. Prove that for
every normed space X there is a compact Hausdorff space K such that X isometrically
embeds into C(K). [Results from general topology and any version of the Hahn–Banach
theorem can be used without proof.]

Let X be a Banach space whose dual X∗ is separable. Prove that every bounded
sequence (xn) in X has a subsequence (yn) such that ϕ(f) = limn→∞ f(yn) exists for all
f ∈ X∗, and show that ϕ ∈ X∗∗. Assuming in addition that X is not reflexive, show that
there is a bounded sequence (xn) in X no subsequence of which converges weakly in X.
[No result can be used without proof.]
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SECTION B

4

(a) Define the terms character and character space for a Banach algebra. Identify the
character space of R(K), where K is a nonempty compact subset of C and R(K) is
the closure in C(K) of the rational functions without poles in K.

(b) Let A be a commutative unital Banach algebra and let x ∈ A. Prove that

σA(x) = {ϕ(x) | ϕ ∈ ΦA} .

[You may assume without proof the Gelfand–Mazur theorem on complex unital

normed division algebras and that the group of invertible elements of A is open.]

Let U be an open subset of C with σA(x) ⊂ U . State the Holomorphic Functional
Calculus for A, x and U . Given a holomorphic function f : U → C, denote by f(x)
the element of A produced by the Holomorphic Functional Calculus for f . Prove
that exp(x) =

∑

∞

n=0

xn

n!
.

Fix a holomorphic function f : U → C. State the formula that defines the element
f(x) of A. Deduce that

σA(f(x)) = {f(λ) | λ ∈ σA(x)} .

[Standard properties of vector-valued integrals can be used without proof.]

Let V be an open subset of C that contains f(U). Show that σA(f(x)) ⊂ V and that
for every holomorphic function g : V → C we have g(f(x)) = (g ◦ f)(x). Deduce, or
otherwise prove, that if ‖x‖ < 1, then 1 − x is an exponential : 1 − x = exp(y) for
some y ∈ A.

(c) State and prove Runge’s theorem on the approximation of holomorphic functions
by rational functions with prescribed sets of poles. [You may of course assume all
results in parts (a) and (b) to answer this part as well as any result from elementary
spectral theory of Banach algebras.]
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State the Riesz Representation Theorem identifying the dual space of the complex
Banach space C(K) for a compact Hausdorff space K.

[For the rest of this question you may assume that if H is a non-zero complex Hilbert

space, K is a compact Hausdorff space, and P is a resolution of the identity of H over K,

then there is a unique isometric unital ∗-homomorphism f 7→
∫

K
f dP : L∞(P ) → B(H)

such that
〈(∫

K
f dP

)

x, y
〉

=
∫

K
f Px,y for every f ∈ L∞(P ), x, y ∈ H. Further,

∥

∥

(∫

K
f dP

)

x
∥

∥

2
=

∫

K
|f |2 dPx,x for every f ∈ L∞(P ), x ∈ H.]

Prove the Spectral Theorem for commutative unital C∗-algebras: Let H be a non-
zero complex Hilbert space, let A be a commutative, unital C∗-subalgebra of B(H), and
let K = ΦA. Then there is a unique resolution P of the identity of H over K such that

T =

∫

K

T̂ dP for every T ∈ A ,

where T̂ is the Gelfand transform of T . [You may assume the Gelfand–Naimark theorem
for commutative unital C∗-algebras without proof.] Prove also that P (U) 6= 0 for every
non-empty open subset U of K.

State the Spectral Theorem for normal operators. Give a brief sketch of the proof.

Let H be a non-zero complex Hilbert space and let T ∈ B(H) be a normal operator.
Assume that the spectrumK = σ(T ) has at least two points. Prove that T has a nontrivial
invariant subspace: There is a closed non-zero proper subspace Y of H such that Ty ∈ Y

for every y ∈ Y . [Hint: construct a suitable orthogonal projection Q with TQ = QT .]
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