MATHEMATICAL TRIPOS Part III

Thursday, 1 June, 2017 1:30 pm to 4:30 pm

PAPER 106

FUNCTIONAL ANALYSIS

Attempt no more than **THREE** questions, with at most **TWO** questions from each section. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

 $\mathbf{2}$

SECTION A

State the Hahn–Banach theorem on the extension of bounded linear functionals. Use it to prove that for a normed space X and for any non-zero $x \in X$ there exists $f \in X^*$ with ||f|| = 1 and f(x) = ||x||. Deduce that X embeds isometrically into X^{**} .

Let X be a normed space. Let Γ be an arbitrary set, and let $\ell_{\infty}(\Gamma)$ be the Banach space of bounded real-valued functions on Γ with the supremum norm. Prove that a map $T: X \to \ell_{\infty}(\Gamma)$ is a bounded linear operator if and only if there is a bounded set $\{f_{\gamma} \mid \gamma \in \Gamma\} \subset X^*$ such that $Tx = (f_{\gamma}x)_{\gamma \in \Gamma}$, and in this case $||T|| = \sup_{\gamma \in \Gamma} ||f_{\gamma}||$.

Prove that for any normed space X there is a set Γ and an isometric embedding $T: X \to \ell_{\infty}(\Gamma)$. Show that if X is separable or if X is the dual of a separable space, then one can take $\Gamma = \mathbb{N}$.

Given $\lambda \ge 1$, we say a normed space X is λ -injective if whenever Y is a subspace of a normed space Z and $T \in \mathcal{B}(Y, X)$, there exists $\tilde{T} \in \mathcal{B}(Z, X)$ such that $\tilde{T}|_Y = T$ and $\|\tilde{T}\| \le \lambda \|T\|$. Prove that $\ell_{\infty}(\Gamma)$ is 1-injective for any set Γ .

Given $\lambda \ge 1$, prove that X is λ -injective if and only if whenever $T: X \to Z$ is an isometric embedding, there is a bounded linear map $P: Z \to X$ such that $||P|| \le \lambda$ and $P \circ T$ is the identity on X. [*Hint: for the "only if" part consider* Y = T(X) and a suitable map $Y \to X$; for the "if" part first embed X isometrically into some $\ell_{\infty}(\Gamma)$.]

¹

CAMBRIDGE

(a) Define the weak topology of a normed space. State and prove Mazur's theorem. [Any version of the Hahn–Banach theorem can be used without proof.] Define what it means for a subset of a normed space to be weakly bounded. Prove that a weakly bounded set is bounded in norm. Deduce that every weakly compact set is bounded in norm.

3

Let X be a Banach space. Prove that X is reflexive if and only if the closed unit ball B_X is weakly compact. [You may use without proof any results about the w*-topology of a dual space provided you clearly state them.]

Let X be a Banach space. Assume that the closed unit ball B_{X^*} of X^* contains a countable subset $\{f_n \mid n \in \mathbb{N}\}$ that separates the points of X. Prove that the weak topology on any weakly compact subset of X is metrizable. [You don't need to check all properties of a metric.]

- (b) Using the results in part (a), prove the following.
 - (i) Let (f_n) be a sequence in C[0,1] that converges weakly to zero. Prove that f_n converges to zero in $L_1[0,1]$ (in the L_1 -norm).
 - (ii) Let X be a reflexive Banach space and C a non-empty, closed, convex subset of X. Show that there exists $x \in C$ such that $||x|| = \inf_{y \in C} ||y||$.
 - (iii) Prove that a weakly compact subset of ℓ_{∞} is norm-separable.

3

Define the w*-topology on the dual space of a normed space. Show that if X is an infinite-dimensional Banach space, then the w*-topology on X* is not metrizable. [Hint: Prove that if there are w*-neighbourhoods U_n , $n \in \mathbb{N}$, of 0 in X* such that every w*-neighbourhood V of 0 contains U_n for some n, then X has a countable basis. You may use elementary results from linear algebra without proof.]

State and prove the theorems of Banach–Alaoglu and Goldstein. Prove that for every normed space X there is a compact Hausdorff space K such that X isometrically embeds into C(K). [Results from general topology and any version of the Hahn–Banach theorem can be used without proof.]

Let X be a Banach space whose dual X^* is separable. Prove that every bounded sequence (x_n) in X has a subsequence (y_n) such that $\varphi(f) = \lim_{n\to\infty} f(y_n)$ exists for all $f \in X^*$, and show that $\varphi \in X^{**}$. Assuming in addition that X is not reflexive, show that there is a bounded sequence (x_n) in X no subsequence of which converges weakly in X. [No result can be used without proof.]

 $\mathbf{4}$

- (a) Define the terms character and character space for a Banach algebra. Identify the character space of R(K), where K is a nonempty compact subset of \mathbb{C} and R(K) is the closure in C(K) of the rational functions without poles in K.
- (b) Let A be a commutative unital Banach algebra and let $x \in A$. Prove that

$$\sigma_A(x) = \{\varphi(x) \mid \varphi \in \Phi_A\} .$$

[You may assume without proof the Gelfand–Mazur theorem on complex unital normed division algebras and that the group of invertible elements of A is open.]

Let U be an open subset of \mathbb{C} with $\sigma_A(x) \subset U$. State the Holomorphic Functional Calculus for A, x and U. Given a holomorphic function $f: U \to \mathbb{C}$, denote by f(x) the element of A produced by the Holomorphic Functional Calculus for f. Prove that $\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.

Fix a holomorphic function $f: U \to \mathbb{C}$. State the formula that defines the element f(x) of A. Deduce that

$$\sigma_A(f(x)) = \{f(\lambda) \mid \lambda \in \sigma_A(x)\} .$$

[Standard properties of vector-valued integrals can be used without proof.]

Let V be an open subset of \mathbb{C} that contains f(U). Show that $\sigma_A(f(x)) \subset V$ and that for every holomorphic function $g: V \to \mathbb{C}$ we have $g(f(x)) = (g \circ f)(x)$. Deduce, or otherwise prove, that if ||x|| < 1, then 1 - x is an *exponential*: $1 - x = \exp(y)$ for some $y \in A$.

(c) State and prove Runge's theorem on the approximation of holomorphic functions by rational functions with prescribed sets of poles. [You may of course assume all results in parts (a) and (b) to answer this part as well as any result from elementary spectral theory of Banach algebras.]

UNIVERSITY OF

 $\mathbf{5}$

State the Riesz Representation Theorem identifying the dual space of the complex Banach space C(K) for a compact Hausdorff space K.

[For the rest of this question you may assume that if H is a non-zero complex Hilbert space, K is a compact Hausdorff space, and P is a resolution of the identity of H over K, then there is a unique isometric unital *-homomorphism $f \mapsto \int_K f \, dP \colon L_{\infty}(P) \to \mathcal{B}(H)$ such that $\langle (\int_K f \, dP) \, x, y \rangle = \int_K f \, P_{x,y}$ for every $f \in L_{\infty}(P)$, $x, y \in H$. Further, $\| (\int_K f \, dP) \, x \|^2 = \int_K |f|^2 \, dP_{x,x}$ for every $f \in L_{\infty}(P)$, $x \in H$.]

Prove the Spectral Theorem for commutative unital C*-algebras: Let H be a nonzero complex Hilbert space, let A be a commutative, unital C*-subalgebra of $\mathcal{B}(H)$, and let $K = \Phi_A$. Then there is a unique resolution P of the identity of H over K such that

$$T = \int_K \hat{T} dP$$
 for every $T \in A$,

where \hat{T} is the Gelfand transform of T. [You may assume the Gelfand–Naimark theorem for commutative unital C^{*}-algebras without proof.] Prove also that $P(U) \neq 0$ for every non-empty open subset U of K.

State the Spectral Theorem for normal operators. Give a *brief* sketch of the proof.

Let H be a non-zero complex Hilbert space and let $T \in \mathcal{B}(H)$ be a normal operator. Assume that the spectrum $K = \sigma(T)$ has at least two points. Prove that T has a nontrivial invariant subspace: There is a closed non-zero proper subspace Y of H such that $Ty \in Y$ for every $y \in Y$. [Hint: construct a suitable orthogonal projection Q with TQ = QT.]

END OF PAPER