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1. State the Cauchy–Kovalevskaya Theorem (CKT) for general order systems of partial
differential equations. Explain briefly why the proof reduces to the case of flat
Cauchy hypersurfaces and first-order systems.

Consider now the following three examples:

(a) the Laplace equation ∆xu = 0 on R
n with Cauchy hypersurface {x1 = 0}

(b) the wave equation (−∂2t + ∆x)u = 0 on R
n+1 with Cauchy hypersurface

{t = 0}

(c) the heat equation (−∂t+∆x)u = 0 on R
n+1 with Cauchy hypersurface {t = 0}.

To which of these examples does the CKT apply? Briefly contrast this to the issue
of well-posedness.

2. Let B(0, 1) ⊂ R
2 denote the open unit ball around the origin, let aα(x, y) be analytic

functions on B(0, 1) and consider the m-th order linear partial differential operator

P :=
∑

|α|6m

aα(x, y)∂
α.

Assume that the hypersurface Σ
.
= {x = 0} is non-characteristic for P in B(0, 1).

The aim of this problem will be to prove a version of Holmgren’s uniqueness theorem
in this context, i.e. the statement that Cm solutions u of the Cauchy problem for
Pu = 0 with trivial data on Σ must vanish in a neighbourhood of the origin.

(a) Write explicitly what it means for Σ above to be non-characteristic for P .

(b) Show that there is a unique linear partial differential operator P ∗ such that
for any open Ω ⊂ B(0, 1) and any u ∈ Cm(Ω) and v ∈ Cm

c (Ω) (i.e. v with
compact support) one has

∫

Ω
Pu · v dx =

∫

Ω
u · P ∗v dx. (1)

(c) Prove that (1) still holds when u, v ∈ Cm(Ω) and for each x ∈ ∂Ω and any β
multi-index with |β| 6 m− 1 either ∂βu(x) = 0 or ∂βv(x) = 0.

(d) Prove that Σ is non-characteristic for P ∗ in B(0, 1). For ǫ ∈ (0, 1), define
Σ̃ǫ = {x = ǫ− y2} ∩ {x > 0}. Show that for all sufficiently small ǫ, the curve
Σ̃ǫ is non-characteristic for P ∗.

(e) For ǫ > 0, consider the transformation x̃ǫ = x + y2 − ǫ, ỹǫ = y. Show that
if f(x, y) is an analytic function on B(0, 1), then for sufficiently small ǫ0,
the collection of functions f̃ǫ(x̃, ỹ) := fα(x + y2 − ǫ, y) where ǫ ∈ (0, ǫ0) are
well defined in the ball B̃(0, 1/2) of radius 1/2 as functions of x̃ and ỹ, and
satisfy uniform analyticity bounds in those variables, i.e. show that there exist
constants γ, ζ > 0 such that for all ǫ ∈ (0, ǫ0), we have

‖∂β f̃ǫ‖L∞(B̃(0,1/2)) 6 γβ!ζ |β|.
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(f) Let g(x, y) be an analytic function on B(0, 1). Consider for ǫ ∈ (0, 1) the
curve Σ̃ǫ as above, and the Cauchy problem,

P ∗v = g and ∂βv|Σ̃ǫ
= 0 for all |β| 6 m− 1. (2)

Using the CKT, (d) and (e), prove that there exists an ǫ, depending on g,
such that there is an analytic solution v of (2) defined in the entire region
ωǫ := {x > 0 and x+y2 < ǫ} ⊂ B(0, 1). [You may use the fact that, rewriting
(2) in coordinates (x̃, ỹ) as an equation P̃ ∗ṽ = g̃, the proof of the CKT by
the method of majorants gives a radius of analyticity on the solution ṽ which
depends only on uniform analyticity bounds for the coefficients of P̃ ∗ and g̃.]

(g) Let P denote the set of polynomials in the variables (x, y). Show that
restricting to P, one can choose ǫ in (f) independent of g ∈ P, i.e. prove that
there exists an ǫ > 0 such that for all g ∈ P, there is an analytic solution
(2) defined in the entire region ωǫ. [Hint: Note that the transformed g̃ is
again polynomial and use this fact together with the linearity of the equation
to remove the dependence on analyticity bounds of g̃ in (f).]

(h) Consider now a Cm solution u on B(0, 1) to

Pu = 0 and ∂βu|Σ = 0 for all |β| 6 m− 1. (3)

Using (1) and the Weierstrass approximation theorem, prove that u = 0 in
ωǫ for ǫ as in (g), and conclude that u = 0 on a neighbourhood of the origin.
[The Weierstrass approximation theorem states that polynomials are dense in
the space C(X) where X ⊂ R

n is compact.]
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2
Let X = {1

2 6 |x| 6 2} ⊂ R
3 denote an annulus, and consider the Dirichlet problem

∂

∂x1

(

∂u

∂x1

)

+
∂

∂x2

(

∂u

∂x2

)

+
∂

∂x3

(

g(|x|)
∂u

∂x3

)

= f (1)

u|∂X = 0 (2)

where g : R → R denotes a smooth function.

(a) Write down what it means for u ∈ H1(X) to satisfy weakly (1)–(2), for
f ∈ L2(X).

(b) Show that if g : R → R is assumed in addition to be positive, then the
equation (1) is uniformly elliptic on X.

(c) Let u be a weak solution of (1)–(2) as in (a) with g as in (b). Prove that there
exists a constant C > 0 independent of u and f such that

‖u‖H1(X) 6 C‖f‖L2(X). (3)

Infer the uniqueness of weak solutions.

(d) Suppose now that g : R → R is smooth but not necessarily positive. Show that
(3) does not necessarily hold for a uniform constant C independent of u and f .

(e) Define the usual spherical coordinates (r, θ, φ) on R
3 by the relations x3 = r cos θ,

x1 = r cosφ sin θ, x2 = r sinφ sin θ. Show that the standard Laplacian is given by

∆xu =
1

r2
∂r(r

2∂ru) +
1

r2 sin2 θ
(∂2φu) +

1

r2 sin θ
(∂θ(sin θ∂θu)) (4)

and that the volume form is given by

dx1 dx2 dx3 = r2 sin θ dr dθ dφ

in these coordinates.

(f) Use the representation (4) to give a direct proof that if u ∈ C∞(X) is a classical
solution of (1)–(2) with g = 1 (i.e. u satisfies ∆xu = f) and f ∈ C∞(X), then

‖u‖H2(X) 6 C‖f‖L2(X). (5)

[Hint: Multiply by ∂2φu and by ∂θ(sin θ∂θu) and integrate by parts with respect to the volume

form. What happens with the boundary terms? How does one eventually estimate (∂2ru)
2? ]

(g) Let u be as in (f). Show then that ∂φu is again a classical C∞(X) solution of
(1)–(2) with g = 1 and with right hand side ∂φf . Show the same statement where the
coordinates (r, θ, φ) are redefined permuting the roles of x1, x2 and x3 in (e). Now suppose
that f is radial, i.e. it is a function of f(|x|). Show that u is also radial, i.e. u = u(|x|).

(h) Let u be again as in (f). Show that

‖u‖L∞(X) 6 C‖f‖L2(X)

for a constant C independent of u and f . Now suppose f is radial. Show that

‖∇u‖L∞(X) 6 C‖f‖L2(X) (6)

for a constant C independent of u and f . Show in contrast that the inequality (6) does
not hold for a uniform constant C if the assumption of radiality on f is dropped.
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1. Consider the following Cauchy problem for an unknown real function u : Rd → R:
{

∂tu(t, x) + F(t, x) · ∇xu(t, x) = 0, t ∈ R, x ∈ R
d

u(t = 0, x) = u0(x), x ∈ R
d,

(1)

where F : R× R
d → R

d is C1 and satisfies supR×Rd

‖F (t,x)‖
1+‖x‖ < +∞.

(a) Define the characteristics of this equation and explain why they are globally
defined.

(b) State carefully the existence and uniqueness of C1 solutions when u0 is C1.
State carefully the existence and uniqueness of L∞ weak solutions when u0 is
L∞ (the notion of weak solutions must be defined). What is the weak-strong
uniqueness principle?

(c) What can happen when F depends on the unknown u?

2. Consider now the following Cauchy problem for an unknown real function u : R → R:
{

∂tu+ ∂x [f(u)] = 0, t > 0, x ∈ R

u(0, x) = u0(x), x ∈ R,
(2)

where f : R → R is C1 and its derivative f ′ is L∞ on R.

(a) State the definition of weak solution for the Cauchy problem (2). State
the Rankine–Hugoniot condition characterizing piecewise constant weak so-
lutions. Give an example of non-uniqueness of weak solutions.

(b) We recall that an entropic solution to (2) is u ∈ L∞(R+×R) such that for all
ϕ ∈ C1

c (R+ × R;R+) all η : R → R convex and piecewise C1 and ψ : R → R

an antiderivative of f ′η′,
∫ T

0

∫

R

(

η(u)∂tϕ+ ψ(u)∂xϕ
)

dt dx+

∫

R

ϕ(0, x)η(u0(x)) dx > 0. (3)

Prove that a classical C1 solution is an entropic solution, and that an entropic
solution is a weak solution.

(c) Consider ηk(u) := |u − k| for k ∈ R. Calculate an associate flux ψ(u) that
satisfies the condition (3) above.

(d) Consider u and v two entropic solutions with initial data u0 and v0. Use ηk
with k = v(s, y) for u and ηk with k = u(t, x) for v to establish

0 6

∫ T

0

∫ T

0

∫

R

∫

R

|u(t, x)− v(s, y)|(∂tΦ+ ∂sΦ)dt ds dxdy

+

∫ T

0

∫ T

0

∫

R

∫

R

sgn(u(t, x) − v(s, y))[f(u(t, x)) − f(v(s, y))](∂xΦ+ ∂yΦ)dt ds dxdy

+

∫ T

0

∫

R

∫

R

|u0(x)− v(s, y)|Φ(0, x, s, y) ds dxdy

+

∫ T

0

∫

R

∫

R

|u(t, x) − v0(y)|Φ(t, x, 0, y) dt dxdy.

for any test function Φ(t, x, s, y) ∈ C1
c (R+ × R× R+ × R;R+).
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(e) Consider ϕ ∈ C1
c (R+ × R;R+) and choose

Φ(t, x, s, y) := ϕ(t, x)χε(t− s, x− y), χε(τ, z) := ε−2χ
(τ

ε
,
z

ε

)

, χ(τ, z) := ζ(τ)θ(z)

with ζ > 0 smooth with
∫∞
−∞ ζ(τ)dτ = 1 and support in [−2,−1] and θ > 0

smooth with
∫∞
−∞ θ(z) = 1 and compact support. By studying the limit ε→ 0

in the previous integral inequality deduce

∫ T

0

∫

R

|u(t, x) − v(t, x)|∂tϕdt dx

+

∫ T

0

∫

R

sgn(u(t, x)− v(t, x))[f(u(t, x)) − f(v(t, x))]∂xϕdt dx

+

∫

R

|u0(x)− v0(x)|ϕ(0, x) dx > 0.

(f) DefineM = sup[−C,C] |f
′| with C = max(‖u‖∞, ‖v‖∞) and a bounded interval

[a, b]. For t > 0, by choosing an appropriate sequence of test functions ϕε

prove that for almost every s ∈ [0, t]

∫ b+M(t−s)

a−M(t−s)
|u(s, x)− v(s, x)|dx 6

∫ b+Mt

a−Mt
|u0(x)− v0(x)|dx.

(g) Deduce that u0 = v0 implies v = u in L∞(R+ × R), and that u0 > 0 almost
everyhere on R implies u > 0 almost everywhere on R+ × R.

END OF PAPER
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