MATHEMATICAL TRIPOS Part III

Monday, 5 June, 2017 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 105

ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS

Attempt all **THREE** questions. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1

1. State the Cauchy–Kovalevskaya Theorem (CKT) for general order systems of partial differential equations. Explain briefly why the proof reduces to the case of flat Cauchy hypersurfaces and first-order systems.

Consider now the following three examples:

- (a) the Laplace equation $\Delta_x u = 0$ on \mathbb{R}^n with Cauchy hypersurface $\{x_1 = 0\}$
- (b) the wave equation $(-\partial_t^2 + \Delta_x)u = 0$ on \mathbb{R}^{n+1} with Cauchy hypersurface $\{t = 0\}$
- (c) the heat equation $(-\partial_t + \Delta_x)u = 0$ on \mathbb{R}^{n+1} with Cauchy hypersurface $\{t = 0\}$.

To which of these examples does the CKT apply? Briefly contrast this to the issue of well-posedness.

2. Let $B(0,1) \subset \mathbb{R}^2$ denote the open unit ball around the origin, let $a_{\alpha}(x,y)$ be analytic functions on B(0,1) and consider the *m*-th order *linear* partial differential operator

$$P := \sum_{|\alpha| \leqslant m} a_{\alpha}(x, y) \partial^{\alpha}.$$

Assume that the hypersurface $\Sigma \doteq \{x = 0\}$ is non-characteristic for P in B(0, 1). The aim of this problem will be to prove a version of *Holmgren's uniqueness theorem* in this context, i.e. the statement that C^m solutions u of the Cauchy problem for Pu = 0 with trivial data on Σ must vanish in a neighbourhood of the origin.

- (a) Write explicitly what it means for Σ above to be non-characteristic for P.
- (b) Show that there is a unique linear partial differential operator P^* such that for any open $\Omega \subset B(0,1)$ and any $u \in C^m(\Omega)$ and $v \in C_c^m(\Omega)$ (i.e. v with compact support) one has

$$\int_{\Omega} Pu \cdot v \, \mathrm{d}x = \int_{\Omega} u \cdot P^* v \, \mathrm{d}x. \tag{1}$$

- (c) Prove that (1) still holds when $u, v \in C^m(\overline{\Omega})$ and for each $x \in \partial\Omega$ and any β multi-index with $|\beta| \leq m-1$ either $\partial^\beta u(x) = 0$ or $\partial^\beta v(x) = 0$.
- (d) Prove that Σ is non-characteristic for P^* in B(0,1). For $\epsilon \in (0,1)$, define $\tilde{\Sigma}_{\epsilon} = \{x = \epsilon y^2\} \cap \{x > 0\}$. Show that for all sufficiently small ϵ , the curve $\tilde{\Sigma}_{\epsilon}$ is non-characteristic for P^* .
- (e) For $\epsilon > 0$, consider the transformation $\tilde{x}_{\epsilon} = x + y^2 \epsilon$, $\tilde{y}_{\epsilon} = y$. Show that if f(x, y) is an analytic function on B(0, 1), then for sufficiently small ϵ_0 , the collection of functions $\tilde{f}_{\epsilon}(\tilde{x}, \tilde{y}) := f_{\alpha}(x + y^2 - \epsilon, y)$ where $\epsilon \in (0, \epsilon_0)$ are well defined in the ball $\tilde{B}(0, 1/2)$ of radius 1/2 as functions of \tilde{x} and \tilde{y} , and satisfy uniform analyticity bounds in those variables, i.e. show that there exist constants $\gamma, \zeta > 0$ such that for all $\epsilon \in (0, \epsilon_0)$, we have

$$\|\partial^{\beta} f_{\epsilon}\|_{L^{\infty}(\tilde{B}(0,1/2))} \leqslant \gamma \beta! \zeta^{|\beta|}$$

UNIVERSITY OF

(f) Let g(x, y) be an analytic function on B(0, 1). Consider for $\epsilon \in (0, 1)$ the curve $\tilde{\Sigma}_{\epsilon}$ as above, and the Cauchy problem,

$$P^*v = g$$
 and $\partial^{\beta}v_{|\tilde{\Sigma}_{\epsilon}} = 0$ for all $|\beta| \leq m - 1.$ (2)

Using the CKT, (d) and (e), prove that there exists an ϵ , depending on g, such that there is an analytic solution v of (2) defined in the entire region $\omega_{\epsilon} := \{x > 0 \text{ and } x + y^2 < \epsilon\} \subset B(0, 1)$. [You may use the fact that, rewriting (2) in coordinates (\tilde{x}, \tilde{y}) as an equation $\tilde{P}^* \tilde{v} = \tilde{g}$, the proof of the CKT by the method of majorants gives a radius of analyticity on the solution \tilde{v} which depends only on uniform analyticity bounds for the coefficients of \tilde{P}^* and \tilde{g} .]

- (g) Let \mathcal{P} denote the set of polynomials in the variables (x, y). Show that restricting to \mathcal{P} , one can choose ϵ in (f) independent of $g \in \mathcal{P}$, i.e. prove that there exists an $\epsilon > 0$ such that for all $g \in \mathcal{P}$, there is an analytic solution (2) defined in the entire region ω_{ϵ} . [Hint: Note that the transformed \tilde{g} is again polynomial and use this fact together with the linearity of the equation to remove the dependence on analyticity bounds of \tilde{g} in (f).]
- (h) Consider now a C^m solution u on B(0,1) to

$$Pu = 0$$
 and $\partial^{\beta} u_{|\Sigma} = 0$ for all $|\beta| \leq m - 1$. (3)

Using (1) and the Weierstrass approximation theorem, prove that u = 0 in ω_{ϵ} for ϵ as in (g), and conclude that u = 0 on a neighbourhood of the origin. [The Weierstrass approximation theorem states that polynomials are dense in the space C(X) where $X \subset \mathbb{R}^n$ is compact.]

CAMBRIDGE

 $\mathbf{2}$

Let $X = \{\frac{1}{2} \leqslant |x| \leqslant 2\} \subset \mathbb{R}^3$ denote an annulus, and consider the Dirichlet problem

$$\frac{\partial}{\partial x_1} \left(\frac{\partial u}{\partial x_1} \right) + \frac{\partial}{\partial x_2} \left(\frac{\partial u}{\partial x_2} \right) + \frac{\partial}{\partial x_3} \left(g(|x|) \frac{\partial u}{\partial x_3} \right) = f \tag{1}$$

$$u|_{\partial X} = 0 \tag{2}$$

where $g: \mathbb{R} \to \mathbb{R}$ denotes a smooth function.

(a) Write down what it means for $u \in H^1(X)$ to satisfy weakly (1)–(2), for $f \in L^2(X)$.

(b) Show that if $g : \mathbb{R} \to \mathbb{R}$ is assumed in addition to be positive, then the equation (1) is uniformly elliptic on X.

(c) Let u be a weak solution of (1)–(2) as in (a) with g as in (b). Prove that there exists a constant C > 0 independent of u and f such that

$$\|u\|_{H^1(X)} \leqslant C \|f\|_{L^2(X)}.$$
(3)

Infer the uniqueness of weak solutions.

(d) Suppose now that $g : \mathbb{R} \to \mathbb{R}$ is smooth but <u>not</u> necessarily positive. Show that (3) does not necessarily hold for a uniform constant C independent of u and f.

(e) Define the usual spherical coordinates (r, θ, ϕ) on \mathbb{R}^3 by the relations $x_3 = r \cos \theta$, $x_1 = r \cos \phi \sin \theta$, $x_2 = r \sin \phi \sin \theta$. Show that the standard Laplacian is given by

$$\Delta_x u = \frac{1}{r^2} \partial_r (r^2 \partial_r u) + \frac{1}{r^2 \sin^2 \theta} (\partial_\phi^2 u) + \frac{1}{r^2 \sin \theta} (\partial_\theta (\sin \theta \partial_\theta u)) \tag{4}$$

and that the volume form is given by

$$dx_1 \, dx_2 \, dx_3 = r^2 \sin \theta \, dr \, d\theta \, d\phi$$

in these coordinates.

(f) Use the representation (4) to give a direct proof that if $u \in C^{\infty}(X)$ is a classical solution of (1)–(2) with g = 1 (i.e. u satisfies $\Delta_x u = f$) and $f \in C^{\infty}(X)$, then

$$\|u\|_{H^2(X)} \leqslant C \|f\|_{L^2(X)}.$$
(5)

[*Hint:* Multiply by $\partial_{\phi}^2 u$ and by $\partial_{\theta}(\sin \theta \partial_{\theta} u)$ and integrate by parts with respect to the volume form. What happens with the boundary terms? How does one eventually estimate $(\partial_r^2 u)^2$?]

(g) Let u be as in (f). Show then that $\partial_{\phi} u$ is again a classical $C^{\infty}(X)$ solution of (1)–(2) with g = 1 and with right hand side $\partial_{\phi} f$. Show the same statement where the coordinates (r, θ, ϕ) are redefined permuting the roles of x_1, x_2 and x_3 in (e). Now suppose that f is radial, i.e. it is a function of f(|x|). Show that u is also radial, i.e. u = u(|x|).

(h) Let u be again as in (f). Show that

$$||u||_{L^{\infty}(X)} \leq C ||f||_{L^{2}(X)}$$

for a constant C independent of u and f. Now suppose f is radial. Show that

$$\|\nabla u\|_{L^{\infty}(X)} \leqslant C \|f\|_{L^{2}(X)} \tag{6}$$

for a constant C independent of u and f. Show in contrast that the inequality (6) does *not* hold for a uniform constant C if the assumption of radiality on f is dropped.

UNIVERSITY OF

- 3
- 1. Consider the following Cauchy problem for an unknown real function $u : \mathbb{R}^d \to \mathbb{R}$:

$$\begin{cases} \partial_t u(t,x) + \mathbf{F}(t,x) \cdot \nabla_x u(t,x) = 0, \quad t \in \mathbb{R}, \ x \in \mathbb{R}^d \\ u(t=0,x) = u_0(x), \quad x \in \mathbb{R}^d, \end{cases}$$
(1)

where $\mathbf{F}: \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$ is C^1 and satisfies $\sup_{\mathbb{R} \times \mathbb{R}^d} \frac{\|F(t,x)\|}{1+\|x\|} < +\infty$.

- (a) Define the *characteristics* of this equation and explain why they are globally defined.
- (b) State carefully the existence and uniqueness of C^1 solutions when u_0 is C^1 . State carefully the existence and uniqueness of L^{∞} weak solutions when u_0 is L^{∞} (the notion of weak solutions must be defined). What is the weak-strong uniqueness principle?
- (c) What can happen when \mathbf{F} depends on the unknown u?
- 2. Consider now the following Cauchy problem for an unknown real function $u : \mathbb{R} \to \mathbb{R}$:

$$\begin{cases} \partial_t u + \partial_x \left[f(u) \right] = 0, \quad t \ge 0, \ x \in \mathbb{R} \\ u(0, x) = u_0(x), \quad x \in \mathbb{R}, \end{cases}$$
(2)

where $f : \mathbb{R} \to \mathbb{R}$ is C^1 and its derivative f' is L^{∞} on \mathbb{R} .

- (a) State the definition of weak solution for the Cauchy problem (2). State the Rankine–Hugoniot condition characterizing piecewise constant weak solutions. Give an example of non-uniqueness of weak solutions.
- (b) We recall that an *entropic solution* to (2) is $u \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R})$ such that for all $\varphi \in C_c^1(\mathbb{R}_+ \times \mathbb{R}; \mathbb{R}_+)$ all $\eta : \mathbb{R} \to \mathbb{R}$ convex and piecewise C^1 and $\psi : \mathbb{R} \to \mathbb{R}$ an antiderivative of $f'\eta'$,

$$\int_{0}^{T} \int_{\mathbb{R}} \left(\eta(u)\partial_{t}\varphi + \psi(u)\partial_{x}\varphi \right) \mathrm{d}t \,\mathrm{d}x + \int_{\mathbb{R}} \varphi(0,x)\eta(u_{0}(x)) \,\mathrm{d}x \ge 0.$$
(3)

Prove that a classical C^1 solution is an entropic solution, and that an entropic solution is a weak solution.

- (c) Consider $\eta_k(u) := |u k|$ for $k \in \mathbb{R}$. Calculate an associate flux $\psi(u)$ that satisfies the condition (3) above.
- (d) Consider u and v two entropic solutions with initial data u_0 and v_0 . Use η_k with k = v(s, y) for u and η_k with k = u(t, x) for v to establish

$$\begin{split} 0 &\leqslant \int_0^T \int_0^T \int_{\mathbb{R}} \int_{\mathbb{R}} |u(t,x) - v(s,y)| (\partial_t \Phi + \partial_s \Phi) \, \mathrm{d}t \, \mathrm{d}s \, \mathrm{d}x \, \mathrm{d}y \\ &+ \int_0^T \int_0^T \int_{\mathbb{R}} \int_{\mathbb{R}} \mathrm{sgn}(u(t,x) - v(s,y)) [f(u(t,x)) - f(v(s,y))] (\partial_x \Phi + \partial_y \Phi) \, \mathrm{d}t \, \mathrm{d}s \, \mathrm{d}x \, \mathrm{d}y \\ &+ \int_0^T \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} |u_0(x) - v(s,y)| \Phi(0,x,s,y) \, \mathrm{d}s \, \mathrm{d}x \, \mathrm{d}y \\ &+ \int_0^T \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} |u(t,x) - v_0(y)| \Phi(t,x,0,y) \, \mathrm{d}t \, \mathrm{d}x \, \mathrm{d}y. \end{split}$$

for any test function $\Phi(t, x, s, y) \in C_c^1(\mathbb{R}_+ \times \mathbb{R} \times \mathbb{R}_+ \times \mathbb{R}; \mathbb{R}_+).$

Part III, Paper 105

[TURN OVER

UNIVERSITY OF

(e) Consider $\varphi \in C_c^1(\mathbb{R}_+ \times \mathbb{R}; \mathbb{R}_+)$ and choose

$$\Phi(t,x,s,y) := \varphi(t,x)\chi_{\varepsilon}(t-s,x-y), \ \chi_{\varepsilon}(\tau,z) := \varepsilon^{-2}\chi\left(\frac{\tau}{\varepsilon},\frac{z}{\varepsilon}\right), \ \chi(\tau,z) := \zeta(\tau)\theta(z)$$

with $\zeta \ge 0$ smooth with $\int_{-\infty}^{\infty} \zeta(\tau) d\tau = 1$ and support in [-2, -1] and $\theta \ge 0$ smooth with $\int_{-\infty}^{\infty} \theta(z) = 1$ and compact support. By studying the limit $\varepsilon \to 0$ in the previous integral inequality deduce

$$\begin{split} &\int_0^T \int_{\mathbb{R}} |u(t,x) - v(t,x)| \partial_t \varphi \, \mathrm{d}t \, \mathrm{d}x \\ &+ \int_0^T \int_{\mathbb{R}} \mathrm{sgn}(u(t,x) - v(t,x)) [f(u(t,x)) - f(v(t,x))] \partial_x \varphi \, \mathrm{d}t \, \mathrm{d}x \\ &+ \int_{\mathbb{R}} |u_0(x) - v_0(x)| \varphi(0,x) \, \mathrm{d}x \geqslant 0. \end{split}$$

(f) Define $M = \sup_{[-C,C]} |f'|$ with $C = \max(||u||_{\infty}, ||v||_{\infty})$ and a bounded interval [a, b]. For t > 0, by choosing an appropriate sequence of test functions φ_{ε} prove that for almost every $s \in [0, t]$

$$\int_{a-M(t-s)}^{b+M(t-s)} |u(s,x) - v(s,x)| \, \mathrm{d}x \leqslant \int_{a-Mt}^{b+Mt} |u_0(x) - v_0(x)| \, \mathrm{d}x.$$

(g) Deduce that $u_0 = v_0$ implies v = u in $L^{\infty}(\mathbb{R}_+ \times \mathbb{R})$, and that $u_0 \ge 0$ almost everywhere on \mathbb{R} implies $u \ge 0$ almost everywhere on $\mathbb{R}_+ \times \mathbb{R}$.

END OF PAPER