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(a) Let Zn = Z(CSn). Let V be an irreducible CSn-module. Define the Gelfand-

Tzetlin basis of V and the Gelfand-Tzetlin subalgebra GZn of CSn. Show that

(i) GZn is a maximal commutative subalgebra of CSn;

(ii) GZn is a semisimple algebra.

(b) Define the Young-Jucys-Murphy elements X1,X2, . . . ,Xn and show directly that
they commute.

Show that

(iii) GZn is generated by the subalgebras Z0, Z1, . . . , Zn ⊆ CSn;

(iv) GZn is generated by the Young-Jucys-Murphy elements X1, . . . ,Xn.

[Olshanskii’s lemma may be assumed.]

(c) Regarding Sn−1 as the subgroup of Sn which acts on {1, 2, . . . , n − 1}, define a
map Sn → Sn−1 by sending π 7→ πn. Here, for k = 1, 2, . . . , n− 1, we set πn(k) = π(k), if
π(k) 6= n and πn(k) = π(n), if π(k) = n.

(v) Verify that (1) (1Sn
)n = 1Sn−1

, (2) σn = σ for all σ ∈ Sn−1, and (3)
(σπθ)n = σπnθ for all π ∈ Sn and σ, θ ∈ Sn−1.

(vi) Suppose that n > 4. Let Φ : Sn → Sn−1 be a map satisfying the condition:
Φ(σπθ) = σΦ(π)θ for all π ∈ Sn and σ, θ ∈ Sn−1. Show that Φ necessarily coincides with
the map defined in (c).

(vii) Deduce the following characterisation of Xn. Extend the map π 7→ πn linearly
to a map Πn : CSn → CSn−1. Show that, in the usual notation,

Π−1
n (〈1Sn−1

〉) ∩ Z((n−1),1) = 〈Xn, 1Sn
〉,

where the angle brackets denote the appropriate span.
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(a) Given n ∈ N, define the sets Spec(n) and Cont(n).

(b) If λ = (λ1, . . . , λn) ∈ Spec(n), and assuming appropriate results, show that

(i) λ1 = 0;

(ii) {λi − 1, λi + 1} ∩ {λ1, . . . , λi−1} 6= ∅ for all 1 < i 6 n;

(iii) If λi = λj = a for some i < j then

{a− 1, a+ 1} ⊆ {λi+1, . . . , λj−1}.

[Appropriate results may be assumed if clearly stated.]

(c) Show that Cont(n) is precisely the set of all n-tuples λ ∈ C
n which satisfy the

properties (i)–(iii) listed above.

(d) Explain briefly how one can deduce the Branching Rule from the previous results
(proofs are not required).

3

(a) State and prove Young’s seminormal form regarding a certain choice of Gelfand-
Tzetlin basis.

(b) Show that V (n−1,1) is isomorphic to the representation {(z1, . . . , zn) ∈ C
n :∑

zi = 0} with Sn acting by place permutations.

Write down all the standard (n − 1, 1)–tableaux and their corresponding contents.
Compute Young’s orthogonal form for the action of the normalised Young basis vectors
{wT } corresponding to each standard tableau.

(c) Recall that a partition (or Young diagram) λ is called a hook if it is of the form
λ = (n− k, 1k) for some 0 6 k 6 n− 1.

(i) Prove that the productX2X3...Xn of YJM elements equals the sum of all n–cycles
of Sn.

(ii) If λ is not a hook and T is a standard λ-tableau, show that X2 . . . XnwT = 0.

(iii) If λ is a hook of the above form and T is a standard λ-tableau, show that
X2 . . . XnwT is a non-zero multiple of wT , determining the multiple explicitly as a function
of k and n.

(iv) If λ ∈ P(n), deduce an expression for X2 . . . Xnw for any w ∈ V λ and deduce
an expression for the character χλ of V λ evaluated at any element lying in the conjugacy
class of cycle type (n). [You may not appeal directly to the Murnaghan-Nakayama Rule.]
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Let 0 < k < n.

(a) For λ ∈ P(n) and µ ∈ P(n− k), and µ 4 λ, define a skew shape λ/µ and define
what it means for a skew shape to be a skew hook. What does it mean for a skew shape
λ/µ to be (i)connected or (ii) totally disconnected?

Let T be a standard λ/µ–tableau. Recall that a Coxeter transposition sj is said to
be admissible for T if sjT is still standard. Let T,R be standard λ/µ–tableaux, π ∈ Sk

and suppose that πT = R. Show that R may be obtained from T by a sequence of ℓ(π)
admissible transpositions.

(b) Define the skew representation V λ/µ and explain why it has the structure of
a CSk-module. For every standard λ/µ-tableau T , show that wT is a cyclic vector in
V λ/µ. [You may assume the existence of an orthonormal basis {wT } as T runs through
the standard λ/µ-tableaux.]

(c) (i) Let (ρ, V ) be a unitary representation of a finite group G. Let V G = {u ∈
V : ρ(g)u = u for all g ∈ G}, the subspace of all ρ-invariant vectors. Suppose that there
exist a cyclic vector v ∈ V , g ∈ G and λ ∈ C, λ 6= 1, such that ρ(g)v = λv. Prove that
V G = {0}.

(ii) Deduce that the multiplicity of the trivial representation V (k) in V λ/µ is equal
to 1 if λ/µ is totally disconnected and 0 otherwise.

5

(a) Define the dominance ordering, D, on partitions of n.

Let λ, µ ∈ P(n). We will say that µ is obtained from λ by a single-box up-move

if there exist positive integers i and j with i < j such that µℓ = λℓ for all ℓ 6= i, j and
µi = λi + 1 and λj = µj + 1.

(b) Let λ, µ ∈ P(n). Show that the following two conditions are equivalent:

(i) λ E µ.

(ii) There exists a chain

λ0
E λ1

E · · · E λs−1
E λs,

where λ0 = λ, λs = µ and λi+1 is obtained from λi by a single-box up-move, for
i = 0, 1, . . . , s − 1.

(c) Prove that if λ E µ then there exists an Sn-invariant subspace Lλ,µ in the
permutation module Mλ such that Mλ ∼= Mµ ⊕ Lλ,µ. [Hint: you may wish to recall

that M (n−k,k) decomposes, without multiplicities, into the direct sum of k + 1 irreducible

representations.]
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(a) Explain briefly how to identify V (1n) with the sign representation, sgn, of Sn.

(b) Define the conjugate partition λ′ of λ. Show that for every partition λ of n,

V λ′ ∼= V λ ⊗ V (1n).

[Young’s orthogonal form may be assumed.]

(c) With the usual notation for Mλ and M̃λ = IndSn

Sλ
sgn, show that M̃λ′ ∼=

V (1n) ⊗Mλ. Calculate the inner product of the characters of Mλ and M̃λ′

.

(d) Let M(µ, λ) be the multiplicity of V µ in Mλ. Deduce from (c) that M(λ, λ) = 1.
[If you wish, you may assume without proof that dimHomSn

(M̃λ′

,Mλ) = 1.]

(e) State and prove Vershik’s linear relations for the M(µ, λ).
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