

MATHEMATICAL TRIPOS Part III

Wednesday, 7 June, 2017 9:00 am to 12:00 pm

PAPER 103

REPRESENTATION THEORY

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

(a) Let $Z_n = Z(\mathbb{C}S_n)$. Let V be an irreducible $\mathbb{C}S_n$ -module. Define the *Gelfand*-*Tzetlin basis* of V and the *Gelfand*-*Tzetlin subalgebra* GZ_n of $\mathbb{C}S_n$. Show that

 $\mathbf{2}$

(i) GZ_n is a maximal commutative subalgebra of $\mathbb{C}S_n$;

(ii) GZ_n is a semisimple algebra.

(b) Define the Young-Jucys-Murphy elements X_1, X_2, \ldots, X_n and show directly that they commute.

Show that

(iii) GZ_n is generated by the subalgebras $Z_0, Z_1, \ldots, Z_n \subseteq \mathbb{C}S_n$;

(iv) GZ_n is generated by the Young-Jucys-Murphy elements X_1, \ldots, X_n .

[Olshanskii's lemma may be assumed.]

(c) Regarding S_{n-1} as the subgroup of S_n which acts on $\{1, 2, \ldots, n-1\}$, define a map $S_n \to S_{n-1}$ by sending $\pi \mapsto \pi_n$. Here, for $k = 1, 2, \ldots, n-1$, we set $\pi_n(k) = \pi(k)$, if $\pi(k) \neq n$ and $\pi_n(k) = \pi(n)$, if $\pi(k) = n$.

(v) Verify that (1) $(1_{S_n})_n = 1_{S_{n-1}}$, (2) $\sigma_n = \sigma$ for all $\sigma \in S_{n-1}$, and (3) $(\sigma \pi \theta)_n = \sigma \pi_n \theta$ for all $\pi \in S_n$ and $\sigma, \theta \in S_{n-1}$.

(vi) Suppose that $n \ge 4$. Let $\Phi : S_n \to S_{n-1}$ be a map satisfying the condition: $\Phi(\sigma \pi \theta) = \sigma \Phi(\pi) \theta$ for all $\pi \in S_n$ and $\sigma, \theta \in S_{n-1}$. Show that Φ necessarily coincides with the map defined in (c).

(vii) Deduce the following characterisation of X_n . Extend the map $\pi \mapsto \pi_n$ linearly to a map $\Pi_n : \mathbb{C}S_n \to \mathbb{C}S_{n-1}$. Show that, in the usual notation,

$$\Pi_n^{-1}(\langle 1_{S_{n-1}} \rangle) \cap Z_{((n-1),1)} = \langle X_n, 1_{S_n} \rangle,$$

where the angle brackets denote the appropriate span.

 $\mathbf{2}$

- (a) Given $n \in \mathbb{N}$, define the sets $\operatorname{Spec}(n)$ and $\operatorname{Cont}(n)$.
- (b) If $\lambda = (\lambda_1, \dots, \lambda_n) \in \text{Spec}(n)$, and assuming appropriate results, show that
- (i) $\lambda_1 = 0;$
- (ii) $\{\lambda_i 1, \lambda_i + 1\} \cap \{\lambda_1, \dots, \lambda_{i-1}\} \neq \emptyset$ for all $1 < i \leq n$;
- (iii) If $\lambda_i = \lambda_j = a$ for some i < j then

$$\{a-1, a+1\} \subseteq \{\lambda_{i+1}, \dots, \lambda_{j-1}\}.$$

[Appropriate results may be assumed if clearly stated.]

(c) Show that Cont(n) is precisely the set of all *n*-tuples $\lambda \in \mathbb{C}^n$ which satisfy the properties (i)–(iii) listed above.

(d) Explain briefly how one can deduce the Branching Rule from the previous results (proofs are not required).

3

(a) State and prove Young's seminormal form regarding a certain choice of Gelfand-Tzetlin basis.

(b) Show that $V^{(n-1,1)}$ is isomorphic to the representation $\{(z_1,\ldots,z_n) \in \mathbb{C}^n : \sum z_i = 0\}$ with S_n acting by place permutations.

Write down all the standard (n-1,1)-tableaux and their corresponding contents. Compute Young's orthogonal form for the action of the normalised Young basis vectors $\{w_T\}$ corresponding to each standard tableau.

(c) Recall that a partition (or Young diagram) λ is called a *hook* if it is of the form $\lambda = (n - k, 1^k)$ for some $0 \le k \le n - 1$.

(i) Prove that the product $X_2X_3...X_n$ of YJM elements equals the sum of all *n*-cycles of S_n .

(ii) If λ is not a hook and T is a standard λ -tableau, show that $X_2 \dots X_n w_T = 0$.

(iii) If λ is a hook of the above form and T is a standard λ -tableau, show that $X_2 \dots X_n w_T$ is a non-zero multiple of w_T , determining the multiple explicitly as a function of k and n.

(iv) If $\lambda \in \mathcal{P}(n)$, deduce an expression for $X_2 \dots X_n w$ for any $w \in V^{\lambda}$ and deduce an expression for the character χ^{λ} of V^{λ} evaluated at any element lying in the conjugacy class of cycle type (n). [You may not appeal directly to the Murnaghan-Nakayama Rule.]

 $\mathbf{4}$

Let 0 < k < n.

(a) For $\lambda \in \mathcal{P}(n)$ and $\mu \in \mathcal{P}(n-k)$, and $\mu \preccurlyeq \lambda$, define a *skew shape* λ/μ and define what it means for a skew shape to be a *skew hook*. What does it mean for a skew shape λ/μ to be (i) *connected* or (ii) *totally disconnected*?

Let T be a standard λ/μ -tableau. Recall that a Coxeter transposition s_j is said to be *admissible* for T if s_jT is still standard. Let T, R be standard λ/μ -tableaux, $\pi \in S_k$ and suppose that $\pi T = R$. Show that R may be obtained from T by a sequence of $\ell(\pi)$ admissible transpositions.

(b) Define the skew representation $V^{\lambda/\mu}$ and explain why it has the structure of a $\mathbb{C}S_k$ -module. For every standard λ/μ -tableau T, show that w_T is a cyclic vector in $V^{\lambda/\mu}$. [You may assume the existence of an orthonormal basis $\{w_T\}$ as T runs through the standard λ/μ -tableaux.]

(c) (i) Let (ρ, V) be a unitary representation of a finite group G. Let $V^G = \{u \in V : \rho(g)u = u \text{ for all } g \in G\}$, the subspace of all ρ -invariant vectors. Suppose that there exist a cyclic vector $v \in V$, $g \in G$ and $\lambda \in \mathbb{C}$, $\lambda \neq 1$, such that $\rho(g)v = \lambda v$. Prove that $V^G = \{0\}$.

(ii) Deduce that the multiplicity of the trivial representation $V^{(k)}$ in $V^{\lambda/\mu}$ is equal to 1 if λ/μ is totally disconnected and 0 otherwise.

$\mathbf{5}$

(a) Define the *dominance ordering*, \geq , on partitions of *n*.

Let $\lambda, \mu \in \mathcal{P}(n)$. We will say that μ is obtained from λ by a single-box up-move if there exist positive integers i and j with i < j such that $\mu_{\ell} = \lambda_{\ell}$ for all $\ell \neq i, j$ and $\mu_i = \lambda_i + 1$ and $\lambda_j = \mu_j + 1$.

(b) Let $\lambda, \mu \in \mathcal{P}(n)$. Show that the following two conditions are equivalent:

(i) $\lambda \leq \mu$.

(ii) There exists a chain

$$\lambda^0 \trianglelefteq \lambda^1 \trianglelefteq \cdots \trianglelefteq \lambda^{s-1} \trianglelefteq \lambda^s,$$

where $\lambda^0 = \lambda, \lambda^s = \mu$ and λ^{i+1} is obtained from λ^i by a single-box up-move, for $i = 0, 1, \ldots, s - 1$.

(c) Prove that if $\lambda \leq \mu$ then there exists an S_n -invariant subspace $L_{\lambda,\mu}$ in the permutation module M^{λ} such that $M^{\lambda} \cong M^{\mu} \oplus L_{\lambda,\mu}$. [Hint: you may wish to recall that $M^{(n-k,k)}$ decomposes, without multiplicities, into the direct sum of k + 1 irreducible representations.]

Part III, Paper 103

6

- (a) Explain briefly how to identify $V^{(1^n)}$ with the sign representation, sgn, of S_n .
- (b) Define the *conjugate partition* λ' of λ . Show that for every partition λ of n,

5

$$V^{\lambda'} \cong V^{\lambda} \otimes V^{(1^n)}.$$

[Young's orthogonal form may be assumed.]

(c) With the usual notation for M^{λ} and $\tilde{M}^{\lambda} = \operatorname{Ind}_{S_{\lambda}}^{S_{n}} \operatorname{sgn}$, show that $\tilde{M}^{\lambda'} \cong V^{(1^{n})} \otimes M^{\lambda}$. Calculate the inner product of the characters of M^{λ} and $\tilde{M}^{\lambda'}$.

(d) Let $M(\mu, \lambda)$ be the multiplicity of V^{μ} in M^{λ} . Deduce from (c) that $M(\lambda, \lambda) = 1$. [If you wish, you may assume without proof that dim $\operatorname{Hom}_{S_n}(\tilde{M}^{\lambda'}, M^{\lambda}) = 1$.]

(e) State and prove Vershik's linear relations for the $M(\mu, \lambda)$.

END OF PAPER