MATHEMATICAL TRIPOS Part III

Monday, 5 June, 2017 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 102

LIE ALGEBRAS AND THEIR REPRESENTATIONS

Attempt all **FIVE** questions. Questions 1, 2 and 5 carry 20 marks. Question 3 carries 30 marks. Question 4 carries 10 marks.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Define what it means for a non-abelian Lie algebra \mathfrak{g} to be *simple*.

Let $\mathfrak{g} = \mathfrak{sl}_n$, the Lie algebra of trace zero $n \times n$ -matrices over a field k.

 $\mathbf{2}$

i) Show that \mathfrak{g} is simple if $k = \mathbb{C}$.

ii) Suppose that k is algebraically closed, and of characteristic p.

Show $\mathfrak{g} = \mathfrak{sl}_p$ is *not* simple.

Show that if p > 2, the quotient of \mathfrak{g} by the center of \mathfrak{g} is simple. [You need not write out the proof in detail – just indicate how, if at all, it differs from what you wrote in (i).] Show that if p = 2 this quotient is abelian.

$\mathbf{2}$

i) Let \mathfrak{g} be a Lie algebra over a field k, and V be a finite dimensional representation of \mathfrak{g} . Define what it means for a bilinear form $(,): V \times V \to k$ to be *invariant*.

Now suppose that V is an irreducible module for \mathfrak{g} , and k is algebraically closed. Show that any two such forms $(,)_1$, $(,)_2$ are proportional, that is if $(,)_1 \neq 0$, there exists a $\lambda \in k$ with $(,)_2 = \lambda(,)_1$.

Show that, if char $k \neq 2$, any such form is either symmetric or anti-symmetric.

ii) Let $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$. Show that *every* finite dimensional representation of \mathfrak{g} admits a non-degenerate invariant bilinear form.

For each irreducible finite dimensional representation of \mathfrak{sl}_2 , describe whether the bilinear form on it is symmetric or anti-symmetric.

UNIVERSITY OF

3

Let

$$\mathfrak{g} = \mathfrak{so}_{2n+1}(\mathbb{C}) = \left\{ A \in Mat_{2n+1}(\mathbb{C}) | AJ + JA^T = 0 \right\}$$

where $J = \begin{pmatrix} & & 1 \\ & & \ddots \\ & 1 & \\ & \ddots & \\ 1 & & \end{pmatrix}$, and let $\mathfrak{t} =$ diagonal matrices in \mathfrak{g} .

i) Decompose \mathfrak{g} as a t-module, and hence write the roots R for \mathfrak{g} . Choose positive roots to be those occurring in upper triangular matrices. Write down the positive roots R^+ , the simple roots Π , the highest root θ , and the fundamental weights.

Write down ρ .

Draw the Dynkin diagram and label it by simple roots. Draw the extended Dynkin diagram.

ii) Show that $\mathfrak{so}_5 \simeq \mathfrak{sp}_4$.

iii) For each root $\alpha \in R$, write the reflection $s_{\alpha} : \mathfrak{t} \to \mathfrak{t}$ explicitly. Describe the Weyl group W (you do not need to prove your answer).

iv) Let $V = \mathbb{C}^{2n+1}$ be the standard representation of \mathfrak{so}_{2n+1} . Draw the crystal of V, and of $V \otimes V$. Write the highest weight of each irreducible summand of $V \otimes V$.

$\mathbf{4}$

(i) State the Weyl character formula, and the Weyl denominator formula, briefly defining the notation you use.

(ii) Show that $ch L(k\rho) = e^{k\rho} \prod_{\alpha \in R^+} (1 + e^{-\alpha} + \dots + e^{-k\alpha}).$

UNIVERSITY OF

 $\mathbf{5}$

Draw the root system of G_2 .

(i) Write down the dimension of the irreducible representation with highest weight $n_1\omega_1 + n_2\omega_2$, when $n_1, n_2 \in \mathbb{N}$.

(ii) Let V be the 7 dimensional representation. What is its highest weight? Draw the crystal of V.

(iii) Decompose $\bigwedge^2 V$ and $S^2 V$ into irreducibles, when V is the 7 dimensional representation. [You may use any results from the course, just as long as they are clearly stated].

END OF PAPER