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a) Obtain, up to and including terms of O(ε), a perturbation series for

I(ε) =

∫

∞

ε

e−xe−ε/x

x
dx

in the limit ε → 0+, expressing your answer in terms of Euler’s constant γ and the
constant β ≡

∫

∞

1
t−1e−t dt. You may use the perturbation series for the exponential

integral E(z):

E(z) =

∫

∞

z
t−1e−t dt ∼ − log z − γ + z as z → 0+.

b) The function f(θ, λ) is defined by

f(θ, λ) =

∫ eiθ

−
1

√

2

e−λz2 dz,

where θ and λ are real, 0 6 θ 6 π, and the integration contour is the straight-line
segment of the complex plane connecting the limits of the integral.

i) Show that, for λ→ ∞,

f(0, λ) ∼

√

π

λ
and f(π, λ) ∼ −

1
√
2 λ

e−
1

2
λ.

[You may assume that
∫

∞

−∞
e−x2

dx =
√
π.]

ii) Use the method of steepest descents to determine all the leading-order asymptotic
behaviours of f(θ, λ) in the limit λ → ∞ for 0 6 θ 6 π, and the values of θ for
which each applies. Your answer should include sketches of the chosen steepest
descent paths.
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(a) The function y(x) satisfies the differential equation

εy′′ + 2xy′ − 2xy = 0

and boundary conditions
y(0) = 0 , y(1) = e ,

where 0 < ε ≪ 1. Using matched asymptotic expansions, find the solution for y(x)
correct to and including O(ε) terms, in both inner and outer regions, for 0 6 x 6 1.

[Hints:

(i) Recall that

erf(z) =
2
√
π

∫ z

0

e−t2 dt and erf(∞) = 1 .

(ii) A particular solution for Y (z) to

Y ′′ + 2zY ′ = 2a1zerf(z) + 2a2z + 2a3ze
−z2 ,

where a1, a2 and a3 are constants, is

Y = a1

(

2
√
π
e−z2 + zerf(z)

)

+ a2z − 1

2
a3ze

−z2 .

(iii) A particular solution for Y (z) to

Y ′′ + 2zY ′ = 2z2erf(z)

is

Y = 1

2
z2erf(z) +

1
√
π
ze−z2 −

∫ z

0

e−t2
∫ t

0

eu
2

erf(u) du dt ,

where
∫ z

0

e−t2
∫ t

0

eu
2

erf(u) du dt ∼ 1

2
log z + C as z → ∞

and C can be taken as a known constant.]

(b) The function w(x) satisfies the differential equation

εxw′′ + w′ + 2xw = 0 ,

and boundary conditions
w(ε) = 0 , w(1) = e−1 ,

where 0 < ε ≪ 1. Using matched asymptotic expansions, find the solution for w(x)
correct to and including O(ε) terms, in both inner and outer regions, for ε 6 x 6 1.

[Hints: A particular solution to

w′ + 2xw = 2x(1 − 2x2)e−x2

is w = x2(1− x2)e−x2

,

and a particular solution to
w′′ + w′ = 2xe−x is w = −x(2 + x)e−x .]
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Waves propagating through a slowly-varying medium satisfy the wave equation

∂2ϕ

∂t2
−

∂

∂x

(

c2
∂ϕ

∂x

)

−
∂

∂y

(

c2
∂ϕ

∂y

)

= 0 , (1)

where the wavespeed c is a slowly varying function of x = (x, y) and t, i.e.

c ≡ c(X, T ) ,

where X = (X,Y ) = εx, T = εt and 0 < ε≪ 1. On the assumption that

ϕ = (A0(X, T ) + εA1(X, T ) + . . . ) exp

(

i

ε
θ(X, T )

)

+ c.c. ,

derive the ray equations for waves with order-one local frequencies, ω, and wavenumbers,
k = (k, ℓ), where ω and k should be defined. Show that

(ωA2
0)T + (kc2A2

0)X + (ℓc2A2
0)Y = 0 ,

and that
∂k

∂Y
=

∂l

∂X
.

Show also that on a ray specified by

dX

dT
= cg ≡

(

∂Ω

∂k
,
∂Ω

∂ℓ

)

,

where the local dispersion relation is given by ω = Ω(k;X, T ),

dk

dT
= −

(

∂Ω

∂X
,
∂Ω

∂Y

)

,
dω

dT
=
∂Ω

∂T
.

Suppose henceforth that the wavespeed c is independent of X and T , i.e. that
c ≡ c(Y ), and that dc

dY > 0. Suppose also that the amplitude A0 is independent of X
and T . Assuming that ℓ > 0, show that

A0 =
µ

c
√
ℓ
,

for some constant µ.

Next, suppose that there exists Ys such that c(Ys) = ω/k, and suppose that a
wavefield exists in Y < Ys. Comment on the validity of ray theory as Y → Ys−. Deduce
an inner scaling (Y − Ys) = δη, where η = O(1) and δ ≡ δ(ε) ≪ 1 is to be determined,
and derive from equation (1) the form of the leading-order solution for ϕ. Assuming that
µ = O(1), identify the order-of-magnitude of ϕ in the inner region; there is no need to
formally match the coefficients in the inner and outer solutions.

[Hint: The solution for ψ(z) of

ψzz − zψ = 0

that decays as z → ∞ is Ai(z), where

Ai(z) →
1

√
π(−z)

1

4

sin
(

2

3
(−z)

3

2 + π
4

)

as z → −∞.]
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