

MATHEMATICAL TRIPOS Part III

Monday, 6 June, 2016 1:30 pm to 3:30 pm

PAPER 336

PERTURBATION METHODS

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

a) Obtain, up to and including terms of $O(\varepsilon)$, a perturbation series for

$$I(\varepsilon) = \int_{\varepsilon}^{\infty} \frac{e^{-x} e^{-\varepsilon/x}}{x} \, \mathrm{d}x$$

in the limit $\varepsilon \to 0^+$, expressing your answer in terms of Euler's constant γ and the constant $\beta \equiv \int_1^\infty t^{-1} e^{-t} dt$. You may use the perturbation series for the exponential integral E(z):

$$E(z) = \int_{z}^{\infty} t^{-1} e^{-t} dt \sim -\log z - \gamma + z \quad \text{as } z \to 0^{+}.$$

b) The function $f(\theta, \lambda)$ is defined by

$$f(\theta,\lambda) = \int_{-\frac{1}{\sqrt{2}}}^{e^{i\theta}} e^{-\lambda z^2} \,\mathrm{d}z,$$

where θ and λ are real, $0 \leq \theta \leq \pi$, and the integration contour is the straight-line segment of the complex plane connecting the limits of the integral.

i) Show that, for $\lambda \to \infty$,

$$f(0,\lambda) \sim \sqrt{\frac{\pi}{\lambda}}$$
 and $f(\pi,\lambda) \sim -\frac{1}{\sqrt{2}\lambda}e^{-\frac{1}{2}\lambda}$.

[You may assume that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$.]

ii) Use the method of steepest descents to determine all the leading-order asymptotic behaviours of $f(\theta, \lambda)$ in the limit $\lambda \to \infty$ for $0 \leq \theta \leq \pi$, and the values of θ for which each applies. Your answer should include sketches of the chosen steepest descent paths.

CAMBRIDGE

 $\mathbf{2}$

(a) The function y(x) satisfies the differential equation

$$\varepsilon y'' + 2xy' - 2xy = 0$$

3

and boundary conditions

$$y(0) = 0, \quad y(1) = e,$$

where $0 < \varepsilon \ll 1$. Using matched asymptotic expansions, find the solution for y(x) correct to and including $O(\varepsilon)$ terms, in both inner and outer regions, for $0 \leq x \leq 1$. [*Hints:*

(i) Recall that

$$\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt \quad and \quad \operatorname{erf}(\infty) = 1.$$

(ii) A particular solution for Y(z) to

$$Y'' + 2zY' = 2a_1 \operatorname{zerf}(z) + 2a_2 z + 2a_3 z e^{-z^2},$$

where a_1, a_2 and a_3 are constants, is

$$Y = a_1 \left(\frac{2}{\sqrt{\pi}} e^{-z^2} + \operatorname{zerf}(z) \right) + a_2 z - \frac{1}{2} a_3 z e^{-z^2}$$

(iii) A particular solution for Y(z) to

$$Y'' + 2zY' = 2z^2 \operatorname{erf}(z)$$

is

$$Y = \frac{1}{2}z^2 \operatorname{erf}(z) + \frac{1}{\sqrt{\pi}}ze^{-z^2} - \int_0^z e^{-t^2} \int_0^t e^{u^2} \operatorname{erf}(u) \, \mathrm{d}u \, \mathrm{d}t \,,$$

where

$$\int_0^z e^{-t^2} \int_0^t e^{u^2} \operatorname{erf}(u) \, \mathrm{d}u \, \mathrm{d}t \sim \frac{1}{2} \log z + C \qquad \text{as } z \to \infty$$

and C can be taken as a known constant.]

(b) The function w(x) satisfies the differential equation

$$\varepsilon x w'' + w' + 2x w = 0,$$

and boundary conditions

$$w(\varepsilon) = 0, \quad w(1) = e^{-1},$$

where $0 < \varepsilon \ll 1$. Using matched asymptotic expansions, find the solution for w(x) correct to and including $O(\varepsilon)$ terms, in both inner and outer regions, for $\varepsilon \leq x \leq 1$. [*Hints: A particular solution to*

$$w' + 2xw = 2x(1 - 2x^2)e^{-x^2}$$
 is $w = x^2(1 - x^2)e^{-x^2}$,

and a particular solution to

$$w'' + w' = 2xe^{-x}$$
 is $w = -x(2+x)e^{-x}$.

[TURN OVER

CAMBRIDGE

3

Waves propagating through a slowly-varying medium satisfy the wave equation

4

$$\frac{\partial^2 \varphi}{\partial t^2} - \frac{\partial}{\partial x} \left(c^2 \frac{\partial \varphi}{\partial x} \right) - \frac{\partial}{\partial y} \left(c^2 \frac{\partial \varphi}{\partial y} \right) = 0, \qquad (1)$$

where the wavespeed c is a slowly varying function of $\mathbf{x} = (x, y)$ and t, i.e.

 $c \equiv c(\mathbf{X}, T) \,,$

where $\mathbf{X} = (X, Y) = \varepsilon \mathbf{x}, T = \varepsilon t$ and $0 < \varepsilon \ll 1$. On the assumption that

$$\varphi = (A_0(\mathbf{X}, T) + \varepsilon A_1(\mathbf{X}, T) + \dots) \exp\left(\frac{i}{\varepsilon}\theta(\mathbf{X}, T)\right) + \text{c.c.}$$

derive the ray equations for waves with order-one local frequencies, ω , and wavenumbers, $\mathbf{k} = (k, \ell)$, where ω and \mathbf{k} should be defined. Show that

$$(\omega A_0^2)_T + (kc^2 A_0^2)_X + (\ell c^2 A_0^2)_Y = 0,$$

and that

$$\frac{\partial k}{\partial Y} = \frac{\partial l}{\partial X}$$

Show also that on a ray specified by

$$\frac{\mathrm{d}\mathbf{X}}{\mathrm{d}T} = \mathbf{c}_g \equiv \left(\frac{\partial\Omega}{\partial k}, \frac{\partial\Omega}{\partial \ell}\right) \,,$$

where the local dispersion relation is given by $\omega = \Omega(\mathbf{k}; \mathbf{X}, T)$,

$$\frac{\mathrm{d}\mathbf{k}}{\mathrm{d}T} = -\left(\frac{\partial\Omega}{\partial X}, \frac{\partial\Omega}{\partial Y}\right), \quad \frac{\mathrm{d}\omega}{\mathrm{d}T} = \frac{\partial\Omega}{\partial T}.$$

Suppose henceforth that the wavespeed c is independent of X and T, i.e. that $c \equiv c(Y)$, and that $\frac{dc}{dY} > 0$. Suppose also that the amplitude A_0 is independent of X and T. Assuming that $\ell > 0$, show that

$$A_0 = \frac{\mu}{c\sqrt{\ell}} \,,$$

for some constant μ .

Next, suppose that there exists Y_s such that $c(Y_s) = \omega/k$, and suppose that a wavefield exists in $Y < Y_s$. Comment on the validity of ray theory as $Y \to Y_s$. Deduce an inner scaling $(Y - Y_s) = \delta \eta$, where $\eta = O(1)$ and $\delta \equiv \delta(\varepsilon) \ll 1$ is to be determined, and derive from equation (1) the form of the leading-order solution for φ . Assuming that $\mu = O(1)$, identify the order-of-magnitude of φ in the inner region; there is no need to formally match the coefficients in the inner and outer solutions.

[Hint: The solution for $\psi(z)$ of

$$\psi_{zz} - z\psi = 0$$

that decays as $z \to \infty$ is Ai(z), where

Ai
$$(z) \to \frac{1}{\sqrt{\pi}(-z)^{\frac{1}{4}}} \sin\left(\frac{2}{3}(-z)^{\frac{3}{2}} + \frac{\pi}{4}\right)$$
 as $z \to -\infty$.]

Part III, Paper 336

5

END OF PAPER

Part III, Paper 336