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Two rigid spheres of radii a1 and a2 are located in an infinite Newtonian fluid. All
inertial effects are neglected. The distance between the centres of the spheres is denoted
by ℓ(t) and satisfies ℓ≫ a1, a2.

A mechanical link between the spheres of variable length and negligible hydrody-
namic resistance is used to vary ℓ(t) in a prescribed, time-periodic fashion. Including
the leading-order hydrodynamic interactions between the spheres, show explicitly that the
two-sphere system cannot move on average if it is force-free. Interpret your result in the
context of the scallop theorem.

External forces are now used to move the two spheres independently in a periodic
fashion as x1(t) = δ cosωt and x2(t) = ℓ0 + δ cos(ωt + φ), where xi denotes the position
along the x-axis of the centre of sphere i, and ω, δ and ℓ0 are constants, such that ℓ0 > δ.
Denote by F1 the force applied by sphere 1 on the fluid. Calculate the leading-order value
of the time-averaged force, 〈F1〉, in powers of 1/ℓ0. Deduce that, except for specific values
of φ, a net force is induced on the fluid. Are your results in contradiction with the scallop
theorem?

[You may quote without proof the drag on an isolated sphere and the velocity field

of a stokeslet]
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An infinite two-dimensional waving sheet is swimming under a viscous fluid using
two travelling-wave modes operating at different frequencies and wavelengths. At small
amplitude in the waving motion, the dimensionless location of material points (xs, ys) in
the frame swimming with the sheet is given by

xs = x+ ǫa sin 3(x− t), ys = ǫb sin(x− t),

where (x, y) denotes the swimming frame of reference and t is the dimensionless time.
Here a > 0, b > 0 and ǫ ≪ 1. As a result of its waving motion, the sheet swims with
steady speed −Uex with respect to the fluid at rest at infinity. Inertial effects in the fluid,
which occupies the region above the sheet, are neglected.

What are the equations and boundary conditions satisfied by the streamfunction ψ
in the frame moving with the sheet?

Solving the problem as a perturbation expansion in powers of ǫ, i.e. ψ = ǫψ1+ǫ
2ψ2+

..., derive the equation and the boundary conditions satisfied by ψ1. Find the solution for
ψ1.

Derive the equation and boundary conditions for ψ2 and the general form of its
solution. Show how this can be used to calculate the swimming speed at order ǫ2 without
requiring the full solution for ψ2.

Show that the swimming speed is zero when the ratio b/a takes a specific value.

Hint: You may use without proving it that the general unit-speed 2π-periodic travelling-
wave solution to ∇4f(x, y, t) = 0 is

f(x, y, t) = A+By+Cy2+Dy3+R

{

∑

n

[

Ene
−ny + Fne

ny + y(Gne
−ny +Hne

ny)
]

ein(x−t)

}
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An active slender filament of length L undergoes prescribed planar deformation in a
Newtonian fluid resulting in swimming. In a frame (x, y, z) moving with the swimmer, the
material points on the filament are located at (xs = x, ys = ǫg(x, t), zs = 0), for 0 6 x 6 L,
where ǫ≪ 1 is a dimensionless parameter. The swimming frame (x, y, z) is defined relative

to the filament by prescribing that the shape function g satisfies g(0, t) =
∂g

∂x
(0, t) = 0. The

swimming motion (i.e. the motion of the (x, y, z) frame) is described by the instantaneous
translational speed, Uex+V ey, and instantaneous angular velocity, Ωez, of the origin and
orientation of the swimming frame measured with respect to the frame in which the fluid
is at rest at infinity. Inertial effects in the fluid are neglected.

The distribution of hydrodynamic forces along the filament is described using
resistive-force theory. State this theory and explain the basic assumptions behind it.

Determine the distribution of velocities of the filament relative to the background
fluid, u(x, t), for all points 0 6 x 6 L.

Anticipating that the swimming kinematics are to be solved as a perturbation ex-
pansion, {U, V,Ω} = ǫ{U1, V1,Ω1}+O(ǫ2), explain why it is only necessary to characterise
the tangent vector along the filament to O(1) in order to solve the problem at O(ǫ).

Compute the total (instantaneous) hydrodynamic forces Fx(t) and Fy(t) and mo-
ment Mz(t) on the filament at O(ǫ). Deduce that, for free-swimming motion, U1 = 0.

Compute the instantaneous values of V1 and Ω1 as functions of

〈

∂g

∂t

〉

and

〈

x
∂g

∂t

〉

where
〈

...

〉

≡
1

L

∫ L

0
...dx.

If the function g(x, t) is periodic in time, show that both V1 and Ω1 time-average to
zero.
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A left-handed rigid helix immersed in a viscous fluid translates and rotates with
velocity U and angular velocity Ω along its axis ez. Inertial effects in the fluid are
neglected. The total length of the helix is ℓ, the radius of the cylinder around which
it is coiled is a, and 0 < θ < π/2 is the angle between the local tangent to the helix
centreline and ez. Writing the linear relationship between the kinematics of the helix (U ,
Ω) and the viscous force F and moment L acting on the helix in the ez direction as

(

F
L

)

= −

(

A B
C D

)(

U
Ω

)

,

calculate analytically the values of A, B, C and D using resistive-force theory. Verify that
B = C.

Consider now the case of two helices, H1 and H2: helix H1 has the same shape as
described above, and is of length ℓ; helix H2 has the same radius a and tangent angle
θ, but is right-handed and has length nℓ, where n > 0. H1 and H2 are aligned with
their axes along the ez axis and linked in such a way that they cannot undergo relative
translation but they do undergo a prescribed relative rotation of magnitude ωez induced
by a rotary motor of negligible hydrodynamic influence. If the two-helix system is force-
and torque-free, compute the rotational speed of each helix and the total translational
speed of the two-helix system. Interpret physically the results for the special cases n = 0,
n = 1 and the limit n→ ∞.

END OF PAPER
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