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1

The wind blows on the surface of the ocean and exerts horizontal stresses (X,Y ) in
the x and y directions, respectively . By consideration of the net force on a thin horizontal
slab, show that the linearised horizontal momentum equations on an f -plane are

ut − fv = −1

ρ
px +

1

ρ
Xz,

vt + fu = −1

ρ
py +

1

ρ
Yz,

where the usual notation is applied and subscript indicates partial differentiation.

The wind produces an Ekman layer near the surface where stresses are important
and a lower region where they are not. Divide the flow into a pressure-driven part (uP , vP )
outside the surface Ekman layer and a stress-driven part (uE , vE) inside the Ekman layer,
and write down the momentum equations for both parts. By integrating across the Ekman
layer show, for steady flow, that the vertical Ekman velocity wE at the base of the Ekman
layer is

wE = − 1

ρf
(Y s

x −Xs
y),

where (Xs, Y s) are the surface stresses.

In the case where the surface stress is transmitted by laminar viscosity ν, by
considering uE + ivE , find the velocity profile in the Ekman layer and show that

Xs = ρ

√
fν

2
(uP − vP ), Y s = ρ

√
fν

2
(uP + vP ),

and

wE =
1

ρf

√
ν

2f
(pxx + pyy).

Now consider the ocean as a shallow layer of depth H and free surface elevation η.
The forced, linearised shallow water equations below the Ekman layer are

ut − fv = −gηx, vt + fu = −gηy,
ηt +H(ux + vy) = −ηEt ,

where wE = ηEt .

This pumping causes the ocean to ‘spin down’ on a time scale τ . Assuming fτ ≪ 1
show that

(ηxx + ηyy −
f2

c2
η)t = − 1

H

√
fν

2
(ηxx + ηyy),

where c =
√
gH . Find the spin down timescale τ for a sinusoidal disturbance of

wavenumber κ and show that it is independent of κ for disturbances with scales small
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compared with the Rossby radius of deformation. In the case when the scales are large
compared to the deformation scale show that disturbances decay with a diffusivity KE

KE = g

√
fν

2
/f2.
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The linearised shallow water equations for a single layer of fluid of constant depth
H on a f -plane reduce to a single equation for the free surface elevation η

ηtt + f2η − c2(ηxx + ηyy) = −Hf · q,

where q = ∇h × u − ηf/H, ∇h is the horizontal gradient operator c2 = gH and f = |f |.
Give a physical interpretation of q

Consider a layer of fluid initially at rest and for which at t = 0, η(x, 0) = η0 sgn(x).

Show that this initial state adjusts to a final state given by

η = η0

{
1− e−x/RD , x > 0,

−1 + ex/RD , x < 0,

where RD = c/f . Show also that the volume flux of the adjusted flow in the y−direction
is 2c2η0/f .

Now consider the case where the depth is discontinuous along the x−axis

H =

{
H−, y < 0,
H+, y > 0,

where H− < H+, so that the flux leaving the step y > 0 is greater than that arriving from
the shallow side y < 0.

This difference is accommodated by a double Kelvin wave in which flow is directed
along the step and surface elevation approaches η0 as y → ±∞ given by

η = η0 sgn (x)−A(x, t)e−|y|/R±

D ,

where R±
D =

√
gH±f−1, and where A(x, t) is to be determined.

Using geostrophy and the fact that Hv is continuous at y = 0, show that

At +∆cAx = ∆cη0δ(x), (1)

where ∆c =
√
gH+ −

√
gH−.

Find the solution of (1) subject to A(x, 0) = 0, and show that the step acts as a
complete barrier to the flow.
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The shallow water potential vorticity (PV) is

q =
f + ζ

H
, (1)

where f is the Coriolis parameter, ζ is the vertical component of the relative vorticity, and
H is the fluid depth.

i) Describe the response of a parcel of fluid in the two following scenarios, providing
a brief physical interpretation in each case:

a) A vertical column of fluid moves into deeper water at the same latitude

b) A vertical column of fluid moves towards the equator without changing its
relative vorticity.

ii) Starting from the shallow water PV conservation equation, or otherwise, derive an
expression for the quasi-geostrophic PV. Explicitly state all assumptions required.

iii) A depth-independent (barotropic) jet, U(y), flows from the west to the east. Starting
from the QG equations and invoking the beta-plane approximation, derive the
dispersion relation for linear plane waves.

iv) A uniform wind, U , blows from the west to the east over an isolated mountain
and generates waves whose phase is stationary with respect to the ground. Using
your result from the previous part, find an expression for the wavelength and group
velocity of these waves. Sketch the region containing all waves generated between
times 0 < t < τ . What happens if the wind instead blows from the east to the west?
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Potential vorticity conservation for forced shallow water flow in the ocean can be
written

D

Dt

(
f + ζ

H

)
=
F

H
− r

H
ζ, (1)

where D/Dt is the material derivative, ζ is the vertical component of the relative vorticity,
f is the Coriolis parameter, H is the fluid depth, F represents forcing by a wind stress
curl, and r is a decay rate associated with bottom stress.

i) Show that the depth-integrated velocity can be written in terms of a streamfunction,
ψ, and obtain an expression relating the streamfunction to the vorticity, ζ.

ii) Consider steady circulation with small Rossby number, but do not assume that
changes in the fluid depth, H are small relative to the total depth. Show that the
streamfunction satisfies the following equation

ũ · ∇ψ =
r

H
∇2ψ − F − r

∇H · ∇ψ
H2

, (2)

and obtain an expression for the pseudovelocity, ũ. Find the general solution for ψ
for the unforced problem with r = F = 0.

iii) A uniform depth fluid is forced by a sinusoidal wind stress curl, F = sin (2πy/Ly)
in the domain 0 6 y 6 Ly. If the bottom stress is relatively weak compared with the
wind stress, find the corresponding solution for Sverdrup flow. Define dimensional
scales and state when Eq. 2 approximately satisfies Sverdrup balance.

iv) Consider forcing by a point source, F = δ(x−x0). For a uniform depth fluid under
the β-plane approximation, sketch contours of ψ satisfying Eq. 2 far from boundaries
but without assuming that r is small. Note, you do not need to obtain an explicit
expression for ψ.

v) Consider a rectangular basin in the region 0 6 x 6 Lx, 0 6 y 6 Ly, where the
fluid depth, H(x), is a parabolic function of x and H(x = 0) = H(x = Lx) = 0.
Invoking the β-plane approximation, find an expression for the pseudovelocity, ũ,
defined above. Sketch contours of ψ associated with the steady state circulation
associated with a sinusoidal wind stress curl F = sin (2πy/Ly). Comment on the
possible connection with your sketch and western boundary currents. You do not
need to obtain an explicit expression for ψ.
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