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Magma is emplaced in a shallow, subsurface chamber with initial temperature T∞

and bulk composition C0. The magma is sub-eutectic, C0 < CE, and the composition of
the solid is pure so that Cs = 0. Cooling through the country rock at the roof maintains
a fixed temperature TB > TE at the roof, where TE is the eutectic temperature of the
magma.

The enrichment of composition due to solidification of the fluid at the roof decreases
the fluid density resulting in the formation of a stagnant mushy layer along the top
boundary. Draw the temperature and composition of the liquid magma and mushy layer
on a phase diagram using a linear liquidus relationship TL(C) = Tm −mC.

Write down a complete set of equations governing the conservation of heat and
composition in the liquid and mushy layer, along with appropriate boundary conditions to
describe the evolution of the system. Derive, or state clearly, the terms in your equations
for conservation of energy and composition within the mushy layer. You may neglect the
diffusivity of composition within the mushy layer, but not within the liquid, and may take
the heat capacity, thermal conductivity and density of the two phases as equal. Note that
for most systems the compositional diffusivity is much smaller than the thermal diffusivity,
D ≪ κ. Find analytical solutions for the temperature, composition, porosity φ(z, t) and
depth h(t) of the mushy layer in the limit

C =
C0

∆C
≫ 1 with S =

L

cp∆T
= O(C),

where ∆C = CB − C0, ∆T = T0 − TB , T0 = TL(C0) and TL(CB) = TB .

Finally, show that in the limit of negligible compositional diffusivity in the liquid,
D/κ → 0, the interface position is determined implicitly by the equation

Ωeλ
2

erfc λ = θ∞eΩλ2

erf Ωλ,

where λ = h(t)/2
√
κt, and Ω should be written in terms of S and C.
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Buoyant CO2 is injected along the horizontal and impermeable top surface of a
two-dimensional groundwater aquifer of uniform permeability k and porosity φ, in which
a large-scale pressure gradient drives a uniform background flow,

U = −k

µ

∂p0
∂x

= −k

µ
G,

where G the background pressure gradient, µ is the viscosity (you should assume equal
viscosity of CO2 and water), and x is the horizontal coordinate. The CO2 spreads as a
buoyant gravity current in the porous aquifer driven by both the density difference between
CO2 (ρc) and water (ρw) and by the background flow.

Use physical and mathematical arguments to construct a model of the evolution of
the depth of the CO2 gravity current h(x, t) in the limit that the depth of the current is
much less than the depth of the aquifer, h ≪ H, and in which the extent of the current is
very much greater than it’s depth.

Consider first the case where CO2 is injected at constant rate Q into the aquifer.
Using a scaling argument, determine the early and late time behaviour of the porous
current. At early times, find the scalings and determine a model equation describing the
initially symmetric shape of the spreading CO2 current. At late times, find the analytical
expressions for the steady upstream profile and interior depth, and find the scaling and
an approximate expression for the shape of the downstream nose.

Consider now the case where a constant volume V of CO2 is injected rapidly and the
volume then translates downstream while spreading due to gravity. Find the analytical,
self-similar form of the constant volume CO2 current.
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The basal conditions of many glaciers are thought to play a crucial role in setting
large scale patterns of flow. Consider the two-dimensional flow of a long, thin glacier, of
Newtonian viscosity µ and density ρ, over a lubricating basal sediment. The upper surface
of the glacier is stress free, and the precipitation of snow and surface melting are both
negligible. At the horizontal base of the glacier the sediment exerts a shear stress on the
ice of the form

σ = µβub,

where ub is the basal ice velocity and β is a coefficient with units of length−1.

Derive an expression for the velocity distribution within the ice that is driven by
hydrostatic pressure gradients (within the ice) and limited by vertical shear stresses. By
integrating over the depth, produce a model of the viscous flow of the ice, assuming that
the total ice volume is conserved, and that the glacier had finite extent xN (t).

The initial ice thickness is approximately 10 × 3/β. Use a scaling analysis to
determine the characteristic length, time and vertical scales of the current. Find analytical
expressions for the early and late-time behaviour of the ice, calculating the approximate
non-dimensional transition time between these two regimes.

Finally, find the profile of the steadily translating nose of the current of viscous,
glacial ice as a function of the distance from the nose. How is the profile at the nose
reflective of the dominant physical balances within the current at early and late times?
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