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Consider Rayleigh-Bénard convection of an incompressible fluid with constant kine-
matic viscosity ν and thermal diffusivity κ between two stress-free horizontal boundaries,
a vertical distance d apart, where the bottom boundary at z = 0 is held at temperature
T0 + ∆T and the top boundary is held at temperature T0. The density ρ depends on
temperature and obeys a linear equation of state, with ρ = ρ0 when T = T0.

(a) Calculate the conductive state for velocity, temperature and pressure. Using d, κ, ∆T
and ρ0 to non-dimensionalise, show that for small non-dimensional perturbations of
(incompressible) velocity u, pressure p and temperature θ away from the conductive
state:

∂u

∂t
= −∇p+RaPrθẑ+ Pr∇2u,

∂θ

∂t
− w = ∇2θ,

where you should define the parameters Ra and Pr carefully.

(b) By considering the vorticity or otherwise, derive non-dimensional equations and stress-
free boundary conditions for the perturbation vertical velocity w and the perturbation
temperature θ. You may assume that:

w =W (z)X(x, y)eσt; θ = Θ(z)X(x, y)eσt .

Show that
[

∂2

∂x2
+

∂2

∂y2

]

X = −λ2X,

σ

(

d2

dz2
− λ2

)

W = −RaPrλ2Θ+ Pr

(

d2

dz2
− λ2

)2

W,

(

d2

dz2
− σ − λ2

)

Θ = −W,

where λ is real. Hence derive an eigenvalue relation for σ. Prove that σ is real when
Ra > 0 and Re(σ) < 0 when Ra < 0. Calculate the critical values of λc and Rac for
marginal stability.
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Consider infinitesimal two-dimensional perturbations about a parallel shear flow in
an inviscid stratified fluid:

u = U(z)x̂ + u′(x, z, t),

p = p(z) + p′(x, z, t),

ρ = ρ(z) + ρ′(x, z, t),
[

u′, p′, ρ′
]

= [û(z), p̂(z), ρ̂(z)] exp[ik(x− ct)],

where the wavenumber k is assumed real, and the phase speed cmay in general be complex.

(a) Applying the Boussinesq approximation appropriately, show that the vertical velocity
eigenfunction ŵ satisfies the Taylor-Goldstein equation:

(

d2

dz2
− k2

)

ŵ −
ŵ

(U − c)

d2

dz2
U +

N2ŵ

(U − c)2
= 0; N2 = −

g

ρ0

dρ

dz
,

where N is the buoyancy frequency and ρ0 is an appropriate reference density.

(b) Assume that there is a piecewise constant distribution of background density ρ. Also
assume that there is either a piecewise constant distribution or a piecewise linear
distribution of background velocity U . Show that the appropriate jump conditions at
interfaces, where at least one of the density, vorticity or velocity are discontinuous,
are given by:

[

ŵ

(U − c)

]+

−

= 0;

[

(U − c)
d

dz
ŵ − ŵ

d

dz
U −

gρ

ρ0

(

ŵ

(U − c)

)]+

−

= 0.

(c) Consider a three-layer flow:

U =























∆U
2

∆Uz
h

−∆U
2

, ρ =























ρ0 −
∆ρ
2

z > h
2
;

ρ0 |z| < h
2
;

ρ0 +
∆ρ
2

z < −h
2
.

You are given that c̃ = 2c/∆U satisfies

c̃4 + c̃2
[

e−4α − (2α− 1)2

4α2
− 1−

J

α

]

+

[

(2α− [1 + J ])2 − e−4α(1 + J)2

4α2

]

= 0,

where α = kh/2 and J = g∆ρh/[ρ0∆U
2]. Hence show that the flow is unstable for

αeα

coshα
< 1 + J <

αeα

sinhα
.

Interpret this instability in terms of a wave resonance in the limit of large wavenumber,
by considering the properties of the waves at each interface in isolation.

Part III, Paper 331 [TURN OVER



4

3

(a) Consider a general dispersion relation D(k, ω) = 0 for wave-like perturbations
proportional to exp[i(kx − ωt)], where k and ω are in general complex. You may
assume that the temporal growth rate has an unique maximum value ωi,max at some
unique real wavenumber kmax. For an observer travelling with velocity V along a ray
x/t = V , you may also assume that the temporal growth rate σ(V ) perceived by this
moving observer is

σ(V ) = ω⋆,i − V k⋆,i,

where the in general complex wavenumber k⋆ is given by the saddle-point condition

∂ω

∂k
(k⋆) =

x

t
,

and the in general complex frequency ω⋆ is given by D(k⋆, ω⋆) = 0.

(i) Define linear stability and linear instability in terms of ωi,max.

(ii) Define the absolute wavenumber, absolute frequency and absolute growth rate.

(iii) Give criteria for when the flow is convectively unstable and absolutely unstable.

(b) Consider the linear complex Ginzburg-Landau equation:

(

∂

∂t
+ U

∂

∂x

)

ψ − µψ − (1 + icd)
∂2

∂x2
ψ = 0.

You may assume that ψ describes a wave-like perturbation, and so is proportional to
exp[i(kx− ωt)] where k and ω are in general complex.

(i) Describe the physical processes modelled by the parameters U , cd and µ.

(ii) Derive the dispersion relation.

(iii) In the µ − U half-plane with U > 0, identify the regions of stability, convective
instability and absolute instability.

(c) Consider (non-dimensional) inviscid plane Couette flow between two horizontal imper-
meable boundaries at z = ±1, with background velocity U = z for −1 6 z 6 1. You
may assume that the vertical velocity perturbation w′ = ŵ(z) exp[i(αx−ωt)] satisfies

(

z −
ω

α

)

(

d2ŵ

dz2
− α2ŵ

)

= 0.

You may ignore potential issues associated with critical layers.

(i) Derive a complete set of eigenfunctions consistent with the appropriate boundary
conditions.

(ii) Briefly explain how these eigenfunctions are consistent with the fact that inviscid
plane Couette flow is linearly stable.
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(a) The linearised Navier-Stokes equations for an infinitesimal velocity perturbation
up(x, y, z, t) to a time-evolving base flow U(x, y, t) = (U(x, y, t), V (x, y, t), 0) are:

∂up

∂t
+ (U(t) ·∇)up = −∇pp − (up ·∇)U(t) +Re−1∇2up,

∇ · up = 0.

Show that the adjoint evolution equation (relative to the usual energy norm) over a
finite time interval [0, T ] is

∂ud

∂τ
= Ω(−τ)× ud −∇× (U(−τ)× ud)−∇pd +Re−1∇2ud,

∇ · ud = 0,

where τ = −t, Ω = ∇×U, ud is the adjoint velocity variable and pd is the equivalent
‘pressure’ adjoint variable enforcing incompressibility. The boundary conditions for
both sets of equations may be taken to be periodic in x and z at some horizontal
extents ±Lx and ±Lz respectively, with the velocities and pressure gradients going to
zero as |y| → ∞, and you may assume that initial and terminal conditions relating ud

and up are consistent.

(b) Consider the toy model:

dx

dt
= |x|Nx+ Lx; x =

(

x1
x2

)

; N =

(

0 −1
1 0

)

; L =

(

− 1

Re
1

0 − 1

4Re

)

,

where Re ≫ 1. Define the orientation ρ(t) = x2(t)/x1(t), and the energy E(t) =
(x21 + x22)/2.

(i) Show that the nonlinear term involving N does not affect the growth or decay
of energy E(t).

(ii) Show that energy growth begins at the orientation ρ+, and ends at the orientation
ρ−, where

ρ± = 2Re
[

1±
√

1− 1/Re2
]

.

(iii) Find the general solution x(t) to the linear problem with N = 0.

(iv) Calculate the time T ∗ at which the gain G(t) = E(t)/E(0) attains its maximum
value Gmax across all possible initial conditions.

(v) Calculate Gmax, and hence determine the leading order scalings T ∗ ∼ ARen and
Gmax ∼ BRem for n, m integers, and A, B real constants to be determined.

(vi) Briefly comment on this scaling result.
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