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State and prove the minimum dissipation theorem for Stokes flow, making it clear
which flows are compared by the theorem.

Let u0 be a Stokes flow in a region V with velocity V0(x) on ∂V and no body force,
and let u be the flow produced by adding a rigid particle while maintaining u = V0(x)
on ∂V . By using your proof of the minimum dissipation theorem, or otherwise, show that
the increase D′ = D −D0 in dissipation due to the presence of the particle is given by

D′ =

∫

A
(u·σ − u0·σ − u·σ0)·ndS,

where A is the surface of the particle, n is its inward normal, and σ and σ0 are the stresses
corresponding to u and u0. [Standard results may be quoted if helpful.] For the linear
flow u0 = U0 +Ω0 ∧ x+E0·x show further that

D′ = F·(U−U0) +G·(Ω−Ω0) + S : E0 ,

where U and Ω are the velocity and angular velocity of the particle, and F, G and

S = −1

2

∫

A
(xσ·n+ σ·nx) dS

are the force, couple and stresslet exerted by the particle.

Now let the particle be a thin straight rod of length 2L, thickness ǫL and orientation
p (with |p| = 1), whose resistance to motion is given by the slender-body formula

f(X) = C(I− 1

2
X′X′)·

(

Ẋ− u∞(X)
)

,

where C = 4πµ/| ln ǫ| and X(s, t) is the position along the rod. Taking the centre of the
rod to be x = 0, calculate F and G for the linear flow u0 above.

Suppose F = G = 0. Show that f = −1

2
Csp·E0·pp and interpret physically the

dependence of this result on p and E0. Show also that dp/dt = Ω0 ∧p+E0·p−p·E0·pp
and interpret this result physically. Calculate S for this case.

Now consider a force-free couple-free rod in a uniform shear flow. Let u0 = (γy, 0, 0)
and p =

(

cos θ(t), sin θ(t), 0
)

, where θ(0) = π/2. Find and sketch the dependence of D′

on θ, commenting on the physical interpretation of any maxima or zeroes. Find θ̇ and
show that the total extra energy dissipated due to the particle in −∞ < t < ∞ has a finite
value.

Speculate briefly on what you think would happen if there were a dilute suspension
of such rods in a uniform shear flow.

Part III, Paper 329



3

2

The concentration C of surfactant on the surface of an inviscid bubble immersed in
a very viscous fluid satisfies

DC

Dt
= −C[∇s·us + (u·n)∇s·n] +Ds∇

2
sC − k(C − C0) , (1)

where n is the unit normal out of the bubble; us = Is·u, ∇s = Is·∇ and (Is)ij = δij−ninj.
Describe the physical interpretation of each of the terms in (1).

Assume that the steady concentration on a spherical bubble of radius a rising
vertically with velocity U can be written as C = C0 + C ′, where |C ′| ≪ C0 and C0

is uniform. Derive an appropriately simplified form of (1) in the frame where the bubble
is at rest. Explain why the velocity on the interface should be given by

u(x) = AIs(x)·U

for some constant A.

Show that ∇sn = Is/a and derive expressions for ∇s·n, ∇
2
sn and ∇s·Is·U. Hence

verify that
C ′ = BU·n

and determine the constant B as a multiple of A. State conditions under which the
assumption |C ′| ≪ C0 is valid and give a physical interpretation of their meaning.

For |C ′| ≪ C0 the surface-tension coefficient is given by γ(C) = γ0 − γ1C
′, where

γ0 = γ(C0) and γ1 is a positive constant. Write down the general stress boundary condition
for a fluid–fluid interface with surface tension γ and curvature κ, and show that in this
case

[

Is·σ·n
]+

−
= 6µAλ Is·U/a ,

where λ is a constant that should be identified.

Assuming that u → −U as r/a → ∞, explain why the Papkovich–Neuber potentials
for the flow can be written in the form

Φ = U+ αaU
1

r
, χ = βa3 U·∇

1

r
,

where α and β are constants. These potentials correspond to

u = −(1 + α+ β)U + (3β − α)(U·n)n , (2)

σ·n =
12µ

a

{

βU+ (α− 3β)(U·n)n
}

(3)

on r = a. Use (2) and (3) to determine α, β and A in terms of λ.

Interpret the limits λ → 0 and λ → ∞ in terms of the surfactant effects on the
tangential velocity and stress on the interface.

What balances the value of n·σ·n given by (3)?

Part III, Paper 329 [TURN OVER



4

3

A rigid horizontal plane z = 0 is covered with a thin layer of viscous fluid of uniform
initial thickness h0. A squeegee (window-wiper blade) is modelled as a thin vertical planar
barrier of horizontal extent 2L in the y-direction and large vertical extent, whose lower
edge is distance ǫh0 above the plane, where 0 < ǫ < 1. The squeegee is moved horizontally
with a constant velocity U perpendicular to its own plane. Surface tension is negligible.

(a) Use the equations of lubrication theory to derive the dimensionless evolution
equation for the flow under gravity around the squeegee

∂h

∂t
−

∂h

∂x
=

1

3
∇·(h3∇h) ,

where h → 1 as x → ∞ and the squeegee is at x = 0, −α 6 y 6 α. The dimensionless
variables should be defined. Assuming that the scales used to make the equations
dimensionless are representative of the flow, express the conditions for lubrication theory
to be appropriate in terms of the relevant parameters.

(b) Consider the limit α = ∞ of an infinitely long squeegee. Find the steady-state
fluid thickness in x > 0 in the implicit form X(h) = x0 − x, where x0 is a constant. What
physical condition determines the value of x0? Sketch the profile h(x) in x > 0 when
x0 ≫ 1.

The squeegee actually has a small dimensionless thickness 2δ, and the lower edge is
a semi-circular arc of radius δ, where ǫ ≪ δ ≪ 1. Determine the flux under the squeegee in
terms of the dimensionless pressure difference ∆p across it. Hence show that the steady-
state thickness just ahead of the squeegee is approximately

9π(2δ)1/2

2ǫ5/2

What is the thickness behind the squeegee?

(c) Consider the case 1 ≪ α < ∞ of a long finite squeegee and assume that the
flow is steady and ǫ is sufficiently small that the flux under the squeegee can be neglected.
Sketch the expected form of the flow, showing the region where h ≫ 1.

Assume that the steady-state thickness ahead of the squeegee has the approximate
form h(x, y) = {9(xN (y) − x)}1/3 for 0 < x < xN , |y| < α, where 1 ≪ xN ≪ α. Why is
this a reasonable assumption? By considering the steady flux balance in two dimensions,
find an equation giving

d

dy

∫ xN

0

h4 dx

as a function of y. Hence determine xN (y) and h(0+, y).

How small does ǫ have to be for the flux under the squeegee to be negligible?
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Consider a viscous gravity current of density ρ0 and viscosity λµ spreading along
the interface z = 0 between two viscous fluids of density ρ1 in z > 0 and ρ2 in z < 0.
Both ambient fluids have viscosity µ, and ρ1 < ρ0 < ρ2. The current is axisymmetric
and occupies h2(r, t) < z < h1(r, t), r < R(t), and its thickness h = h1 − h2 satisfies
|∂h/∂r| ≪ 1. Let H(t) = h(0, t) and H(t) ≪ R(t).

If the vertical force balance is hydrostatic, find the pressure in all three fluids and
the relationship between h1 and h2. Why would you expect this relationship to hold, and
what would happen if it didn’t? Assuming that it does hold, and defining a modified
pressure by subtracting off the hydrostatic pressure, show that the effect of gravity is
equivalent to a radial body force f within the current of magnitude ∆ρ g ∂h/∂r, where ∆ρ
is to be found.

Consider the flow driven by this body force. Use scaling arguments to show that,
providedH/R ≪ λ ≪ R/H, the typical radial velocity in the current scales like ∆ρ gH2/µ,
explaining the two restrictions on λ. Use scaling arguments to show further that a current
with fixed volume V spreads like R ∼ At1/5 and to determine the dependence of A on the
other dimensional parameters. Deduce the form of the similarity solution for h.

The radial velocity in the current takes the form At−4/5U(η), where η is the
similarity variable. Use the radial equation of mass conservation in the current to show
that U ∝ η.

If a thin rigid disc of radius R is placed at the origin of an axisymmetric straining
flow u∞ = E(r, 0,−2z) then it is known that the radial stress acting on each of its upper
and lower surfaces is given by

er·σ·n =
8

π

µEr

(R2 − r2)1/2
.

By considering the perturbation flow in this problem, deduce the value of h∂h/∂r (or
of the equivalent similarity function) in the self-similar gravity-current problem. What
general properties of Stokes flow are you using to make this deduction?

Show that

R(t) =

(

125

512π

∆ρ gV 2t

µ

)1/5

.

Suppose now that the fluid in the gravity current differs from the upper fluid only
by containing some dense dissolved chemical, with diffusivity D, that is insoluble in the
lower fluid. Assume that the thickness of the current is now controlled by diffusion,
i.e. H ∼ (Dt)1/2, and that the typical density difference ∆ρ(t) can be calculated from
the initial density difference ∆ρ0 and volume V0 of the current. Use scaling arguments to
estimate R(t) for this situation.

END OF PAPER
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