MATHEMATICAL TRIPOS Part III

Friday, 27 May, 2016 1:30 pm to 3:30 pm

PAPER 327

DISTRIBUTION THEORY AND APPLICATIONS

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

 $\mathbf{1}$

Define the spaces $\mathcal{D}(\mathbf{R}^n)$ and $\mathcal{D}'(\mathbf{R}^n)$, specifying the notion of convergence in each. Define the convolution between $\mathcal{D}'(\mathbf{R}^n)$ and $\mathcal{D}(\mathbf{R}^n)$.

Prove that $\mathcal{D}(\mathbf{R}^n)$ is dense in $\mathcal{D}'(\mathbf{R}^n)$.

Determine the limit in $\mathcal{D}'(\mathbf{R}^2 \setminus \{0\})$ of the sequence of functions

$$u_m(x_1, x_2) = m \sin\left(m |x_1^2 + x_2^2 - 1|\right), \quad m = 1, 2, 3, \dots$$

Does the limit exist in $\mathcal{D}'(\mathbf{R}^2)$?

$\mathbf{2}$

State and prove the Paley-Wiener-Schwartz theorem.

Let $\{y_m\}_{m=1}^N$ be a sequence of distinct points in \mathbb{Z}^n and $\{f_m\}_{m=1}^N$ be a collection of entire, complex valued functions of $z \in \mathbb{C}^n$, none of which are identically zero. Suppose that the functions obey the estimates

$$\left|e^{\mathbf{i}z\cdot y_m}f_m(z)\right| \lesssim (1+|z|)^m \exp\left(\frac{1}{m+1}|\mathsf{Im}\,z|\right), \quad m=1,\ldots,N$$

for each $z \in \mathbb{C}^n$. Can you say anything with regards the linear independence of such a set of functions? Justify your answer.

3

Let $X \subset \mathbf{R}^n$ be open. Define the class of symbols $\text{Sym}(X, \mathbf{R}^k; N)$. What does it mean for $\Phi: X \times \mathbf{R}^k \to \mathbf{R}$ to be a *phase function*?

If $a \in \text{Sym}(X, \mathbf{R}^k; N)$ and Φ is a phase function explain how the oscillatory integral

$$I_{\Phi}(a) = \int e^{i\Phi(x,\theta)} a(x,\theta) \,\mathrm{d}\theta$$

defines a linear form on $\mathcal{D}(X)$. Show that $I_{\Phi}(a) \in \mathcal{D}'(X)$.

A distribution $u \in \mathcal{D}'(\mathbf{R}^2)$ is defined by

$$\langle u, \varphi \rangle = \int_{-\infty}^{\infty} x_2 \frac{\partial \varphi}{\partial x_1}(0, x_2) \, \mathrm{d}x_2.$$

Express u as an oscillatory integral. You should prove your answer does indeed give rise to the same distribution.

3

END OF PAPER

Part III, Paper 327