MATHEMATICAL TRIPOS Part III

Tuesday, 7 June, 2016 $-1{:}30~\mathrm{pm}$ to $3{:}30~\mathrm{pm}$

PAPER 326

INVERSE PROBLEMS

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1 Generalised inverses and regularisation of linear inverse problems This question deals with the concepts of generalised inverses and regularisation.

 $\mathbf{2}$

- (i) Recall the definition of the Moore-Penrose inverse.
- (ii) Compute the Moore-Penrose inverse of the right-shift operator $K : \ell^2 \to \ell^2$, $\{u_j\}_{j \in \mathbb{N}} \to \{f_j\}_{j \in \mathbb{N}}$, with

$$f_j = (Ku)_j := \begin{cases} 0 & j = 1 \\ u_{j-1} & j \ge 2 \end{cases}.$$

It is necessary to also state the domain of K^{\dagger} .

- (iii) Let \mathcal{U} and \mathcal{V} be Hilbert spaces. What is an equivalent condition to $f \in \mathcal{R}(K)$ for $K \in \mathcal{K}(\mathcal{U}, \mathcal{V})$?
- (iv) Recall the definition of a regularisation (operator)? Give an example for a regularisation.
- (v) We consider the problem of differentiation, formulated as the inverse problem of finding u from Ku = f with the integral operator $K : L^2([0, 1]) \to L^2([0, 1])$ defined as

$$(Ku)(y) := \int_0^y u(x) \, dx \, .$$

Show that $R_{\alpha}: L^{2}([0,1]) \to L^{2}([0,1])$ with

$$(R_{\alpha}f)(x) := \frac{1}{\alpha} \begin{cases} f(x+\alpha) - f(x) & x \in \left[0, \frac{1-\alpha}{2}\right] \\ f(x+\frac{\alpha}{2}) - f(x-\frac{\alpha}{2}) & x \in \left[\frac{1-\alpha}{2}, \frac{1+\alpha}{2}\right] \\ f(x) - f(x-\alpha) & x \in \left[\frac{1+\alpha}{2}, 1\right] \end{cases}$$

for $\alpha \in]0, 1/2[$ is a convergent regularisation method and determine a corresponding a-priori parameter choice rule. In order to do so, verify the estimate

$$\|K^{\dagger}f - R_{\alpha}f^{\delta}\|_{L^{2}([0,1])} \leqslant \frac{\sqrt{6}}{\alpha}\delta + \frac{\sqrt{17}}{4}\alpha c$$

first, for $f \in H^2([0,1])$, $||f''||_{L^2([0,1])} \leq c$ and $f^{\delta} \in L^2([0,1])$ with $||f - f^{\delta}||_{L^2([0,1])} \leq \delta$. Without proof you are allowed to use the estimate

$$\int_{0}^{\frac{1-\alpha}{2}} |(R_{\alpha}(f))(x) - f'(x)|^2 \, dx + \int_{\frac{1+\alpha}{2}}^{1} |(R_{\alpha}(f))(x) - f'(x)|^2 \, dx \leq \alpha^2 c^2$$

Part III, Paper 326

CAMBRIDGE

2 Bregman distances and error estimates

This question deals with error estimates of variational regularisation methods in the Bregman distance setting.

- (i) Recall the definitions of the subdifferential for convex functionals and the Bregman as well as the symmetric Bregman distance.
- (ii) Compute the Bregman distance $D_E(x, y)$ for E being the maximum-entropy regularisation

$$E(x) := \int_{\Omega} x(t) \log(x(t)) - x(t) dt,$$

for a bounded domain Ω . Use without proof that the subdifferential of a Fréchetdifferentiable functional consists of its Fréchet-derivative only.

- (iii) Draw a sketch of the Bregman distance $D_E^p(1,0)$ for the function E(x) := |x| and a $p \notin \{-1,1\}$ of your choice.
- (iv) Let $K \in \mathcal{L}(\mathcal{U}, \mathcal{V})$, and $J : \mathcal{U} \to \mathbb{R}$ be a convex, lower semi-continuous and proper functional. Further assume that there exist $u^{\dagger} \in \mathcal{U}$ and $f \in \mathcal{V}$ with $Ku^{\dagger} = f$. Show that the source condition

$$\mathcal{R}(K^*K) \cap \partial J(u^{\dagger}) \neq \emptyset, \qquad (SC)$$

i.e. there exists an element $v \in \mathcal{U} \setminus \{0\}$ with $K^*Kv \in \partial J(u^{\dagger})$, is equivalent to the existence of a function $\overline{u} \in \mathcal{U}$ such that u^{\dagger} satisfies

$$u^{\dagger} \in \arg\min_{u \in \mathcal{U}} \left\{ \frac{1}{2} \| Ku - K\overline{u} \|_{\mathcal{V}}^{2} + \alpha J(u) \right\} ,$$

for $\alpha > 0$.

(v) Let the same assumptions hold true as in the previous exercise, but let u^{\dagger} now be a *J*-minimising least-squares solution (for given data $f \in \mathcal{V}$). Verify the estimate

$$D_J^w(u_\alpha, u^{\dagger}) \leqslant D_J^w(u^{\dagger} - \alpha v, u^{\dagger}),$$

for u_{α} being a solution of the Tikhonov-type regularisation functional

$$u_{\alpha} \in \arg\min_{u \in \mathcal{U}} \left\{ \frac{1}{2} \|Ku - f\|_{\mathcal{V}}^2 + \alpha J(u) \right\},$$

and specify w.

(vi) How is the source condition (SC) connected to the generalised Eigenvalue problem? What are the consequences for the previously derived error estimate in case u^{\dagger} is a generalised Eigenfunction of J and J is one-homogeneous? Does the result imply $u_{\alpha} = u^{\dagger}$?

[TURN OVER

CAMBRIDGE

4

3 Computational realisation of variational regularisation methods

This question deals with basic concepts in convex analysis and the computational realisation of convex, variational regularisation methods.

- (i) Recall the definition of the proximity, respectively the resolvent operator, for a convex functional E.
- (ii) Compute the Fréchet-derivative of

$$E(x) = \int_{\Sigma} y(t) \log\left(\frac{y(t)}{(Kx)(t)}\right) + (Kx)(t) - y(t) dt,$$

for $K \in \mathcal{L}(\text{PDF}(\Omega), L^1_+(\Sigma))$, bounded domains Ω and Σ , and y(t) > 0 for all $t \in \Sigma$. Without proof you are allowed to make use of the fact that the Fréchet-derivative E' satisfies

$$\frac{d}{d\tau}E(x+\tau z)\Big|_{\tau=0} = \langle z, E'(x)\rangle = \int_{\Omega} z(t) \left(E'(x)\right)(t) dt,$$

and that the order of differentiation (with respect to τ) and integration (with respect to t) can be interchanged.

- (iii) Compute simple, closed-form solutions of the resolvent operators for the following convex functions or functionals:
 - $E(x) = \frac{1}{2} \|DQx y\|_2^2$, where $D \in \mathbb{R}^{m \times n}$ and $Q \in \mathbb{R}^{n \times n}$ are matrices such that $D^T D$ is a diagonal matrix, and Q is an orthogonal matrix.
 - $E(x) = \int_{\Omega} y(t) \log\left(\frac{y(t)}{x(t)}\right) + x(t) y(t) dt$, for a bounded domain Ω and y(t) > 0 for all $t \in \Omega$. Which one of the solutions makes sense and which one does not?
 - E(x) = |x|.
- (iv) The convex conjugate $E^* : \mathcal{X}^* \to \mathbb{R} \cup \{+\infty\}$ of a functional $E : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ is defined as

$$E^*(y) := \sup_{x \in \mathcal{X}} \langle x, y \rangle - E(x).$$

Compute the convex conjugate E^* of the function $E(x) := \frac{\lambda}{2}|x-z|^2$, for a positive scalar $\lambda \in \mathbb{R}$.

(v) Show that the algorithm

$$w^{k+1} = \left(I + \frac{1}{\tau}\partial F^*\right)^{-1} \left(\frac{1}{\tau}u^k - D^T v^k\right)$$
$$u^{k+1} = u^k - \tau \left(D^T v^k + w^{k+1}\right)$$
$$v^{k+1} = (I + \sigma\partial G)^{-1}(v^k + \sigma D(u^{k+1} - \tau (D^T v^k + w^{k+1}))$$

is equivalent to the primal-dual hybrid gradient method (PDHGM) as introduced in the lecture, for a matrix $D \in \mathbb{R}^{m \times n}$ and convex functions $F^* : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$

Part III, Paper 326

UNIVERSITY OF

5

and $G: \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$. Without proof you are allowed to make use of the Moreau-identity

$$x = (I + \alpha \partial E)^{-1}(x) + \alpha \left(I + \frac{1}{\alpha} \partial E^*\right)^{-1} \left(\frac{x}{\alpha}\right) \,.$$

Conclude (from the lecture) how the parameters τ and σ have to be chosen in order to guarantee convergence.

END OF PAPER