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1 Generalised inverses and regularisation of linear inverse problems
This question deals with the concepts of generalised inverses and regularisation.

(i) Recall the definition of the Moore-Penrose inverse.

(ii) Compute the Moore-Penrose inverse of the right-shift operator K : ℓ2 → ℓ2,
{uj}j∈N → {fj}j∈N, with

fj = (Ku)j :=

{

0 j = 1

uj−1 j > 2
.

It is necessary to also state the domain of K†.

(iii) Let U and V be Hilbert spaces. What is an equivalent condition to f ∈ R(K) for
K ∈ K(U ,V)?

(iv) Recall the definition of a regularisation (operator)? Give an example for a regular-
isation.

(v) We consider the problem of differentiation, formulated as the inverse problem of
finding u from Ku = f with the integral operator K : L2([0, 1]) → L2([0, 1]) defined
as

(Ku)(y) :=

∫ y

0
u(x) dx .

Show that Rα : L2([0, 1]) → L2([0, 1]) with

(Rαf)(x) :=
1

α











f(x+ α)− f(x) x ∈
[

0, 1−α
2

[

f(x+ α
2 )− f(x− α

2 ) x ∈
[

1−α
2 , 1+α

2

[

f(x)− f(x− α) x ∈
[

1+α
2 , 1

]

for α ∈]0, 1/2[ is a convergent regularisation method and determine a corresponding
a-priori parameter choice rule. In order to do so, verify the estimate

‖K†f −Rαf
δ‖L2([0,1]) 6

√
6

α
δ +

√
17

4
αc

first, for f ∈ H2([0, 1]), ‖f ′′‖L2([0,1]) 6 c and f δ ∈ L2([0, 1]) with ‖f−f δ‖L2([0,1]) 6 δ.
Without proof you are allowed to use the estimate

∫ 1−α

2

0
|(Rα(f))(x)− f ′(x)|2 dx+

∫ 1

1+α

2

|(Rα(f))(x) − f ′(x)|2 dx 6 α2c2 .
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2 Bregman distances and error estimates
This question deals with error estimates of variational regularisation methods in the

Bregman distance setting.

(i) Recall the definitions of the subdifferential for convex functionals and the Bregman
as well as the symmetric Bregman distance.

(ii) Compute the Bregman distance DE(x, y) for E being the maximum-entropy regu-
larisation

E(x) :=

∫

Ω
x(t) log(x(t))− x(t) dt ,

for a bounded domain Ω. Use without proof that the subdifferential of a Fréchet-
differentiable functional consists of its Fréchet-derivative only.

(iii) Draw a sketch of the Bregman distance Dp
E(1, 0) for the function E(x) := |x| and a

p /∈ {−1, 1} of your choice.

(iv) Let K ∈ L(U ,V), and J : U → R be a convex, lower semi-continuous and proper
functional. Further assume that there exist u† ∈ U and f ∈ V with Ku† = f . Show
that the source condition

R(K∗K) ∩ ∂J(u†) 6= ∅ , (SC)

i.e. there exists an element v ∈ U \ {0} with K∗Kv ∈ ∂J(u†), is equivalent to the
existence of a function u ∈ U such that u† satisfies

u† ∈ argmin
u∈U

{

1

2
‖Ku−Ku‖2V + αJ(u)

}

,

for α > 0.

(v) Let the same assumptions hold true as in the previous exercise, but let u† now be
a J-minimising least-squares solution (for given data f ∈ V). Verify the estimate

Dw
J (uα, u

†) 6 Dw
J (u

† − αv, u†) ,

for uα being a solution of the Tikhonov-type regularisation functional

uα ∈ argmin
u∈U

{

1

2
‖Ku− f‖2V + αJ(u)

}

,

and specify w.

(vi) How is the source condition (SC) connected to the generalised Eigenvalue problem?
What are the consequences for the previously derived error estimate in case u† is a
generalised Eigenfunction of J and J is one-homogeneous? Does the result imply
uα = u†?
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3 Computational realisation of variational regularisation methods
This question deals with basic concepts in convex analysis and the computational

realisation of convex, variational regularisation methods.

(i) Recall the definition of the proximity, respectively the resolvent operator, for a
convex functional E.

(ii) Compute the Fréchet-derivative of

E(x) =

∫

Σ
y(t) log

(

y(t)

(Kx)(t)

)

+ (Kx)(t)− y(t) dt ,

for K ∈ L(PDF(Ω), L1
+(Σ)), bounded domains Ω and Σ, and y(t) > 0 for all t ∈ Σ.

Without proof you are allowed to make use of the fact that the Fréchet-derivative
E′ satisfies

d

dτ
E(x+ τz)

∣

∣

∣

∣

τ=0

= 〈z,E′(x)〉 =
∫

Ω
z(t) (E′(x))(t) dt ,

and that the order of differentiation (with respect to τ) and integration (with respect
to t) can be interchanged.

(iii) Compute simple, closed-form solutions of the resolvent operators for the following
convex functions or functionals:

• E(x) = 1
2‖DQx − y‖22, where D ∈ R

m×n and Q ∈ R
n×n are matrices such

that DTD is a diagonal matrix, and Q is an orthogonal matrix.

• E(x) =
∫

Ω y(t) log
(

y(t)
x(t)

)

+x(t)−y(t) dt, for a bounded domain Ω and y(t) > 0

for all t ∈ Ω. Which one of the solutions makes sense and which one does
not?

• E(x) = |x|.

(iv) The convex conjugate E∗ : X ∗ → R ∪ {+∞} of a functional E : X → R ∪ {+∞} is
defined as

E∗(y) := sup
x∈X

〈x, y〉 − E(x) .

Compute the convex conjugate E∗ of the function E(x) := λ
2 |x− z|2, for a positive

scalar λ ∈ R.

(v) Show that the algorithm

wk+1 =

(

I +
1

τ
∂F ∗

)−1(1

τ
uk −DT vk

)

uk+1 = uk − τ
(

DT vk + wk+1
)

vk+1 = (I + σ∂G)−1(vk + σD(uk+1 − τ(DT vk + wk+1))

is equivalent to the primal-dual hybrid gradient method (PDHGM) as introduced
in the lecture, for a matrix D ∈ R

m×n and convex functions F ∗ : Rn → R ∪ {+∞}
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and G : R
m → R ∪ {+∞}. Without proof you are allowed to make use of the

Moreau-identity

x = (I + α∂E)−1(x) + α

(

I +
1

α
∂E∗

)−1
(x

α

)

.

Conclude (from the lecture) how the parameters τ and σ have to be chosen in order
to guarantee convergence.

END OF PAPER
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