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(i) Define the order of α mod N for integers α and N with α < N coprime. Compute the
order of 7 mod 15. Explain briefly how knowledge of the order of α mod N can be used
to provide a factor of N , stating the conditions on α and its order that must be satisfied.
Illustrate the procedure in the case of α = 7 and N = 15.

(ii) Outline the steps involved in Shor’s quantum algorithm for finding a factor of an
integer N . Any significant theorems that you invoke to justify the algorithm should be
clearly stated. In particular you may quote without proof the following result from the
theory of continued fractions:
Theorem CF: For any given rational number 0 < a/b < 1 with a and b coprime integers
having at most n digits each, let p/q be any rational number (with p and q coprime)

satisfying
∣

∣

∣

a
b −

p
q

∣

∣

∣
< 1

2q2
. Then there are only O(n) such fractions p/q and they can all be

classically computed from a/b in O(n3) time. Furthermore their denominators are all less
than or equal to b.

(iii) Consider applying Shor’s algorithm to factorise N = 15, with α < N coprime having
been chosen to be 7. Determine the probability that a single run of Shor’s algorithm for
this particular choice of α and N will output a factor of 15 (different from 1 and 15 itself).
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(a) Let H be a finite dimensional state space and let G ⊆ H be a linear subspace. Let |ψ〉
be any state in H.
Define the operator Iψ of reflection in the hyperplane orthogonal to |ψ〉, and the operator
IG , of reflection in the subspace G⊥ orthogonal to G. In terms of these, state and prove
the Amplitude Amplification Theorem.

Now write [N ] = {0, 1, 2, . . . , N − 1} and let H have dimension N with orthonormal basis
{| x〉 : x ∈ [N ]}.

(b) Suppose we are given a quantum oracle Ug for a function g : [N ] → {0, 1}. If
G = span{| x〉 : g(x) = 1}, describe how IG may be implemented using Ug and other
quantum operations that are independent of g. (For any g the quantum oracle Ug acts
on H with an extra qubit adjoined, and it is defined by Ug | x〉 | k〉 = | x〉 | k ⊕ g(x)〉 for all
x ∈ [N ] and k ∈ {0, 1}; and here ⊕ denotes addition mod 2.)

(c) In this question you may assume that for any classically computable function g : [N ] →
{0, 1}, we can implement the corresponding quantum oracle Ug (defined as in (b) above),
and for any state |ψ〉 ∈ H, we can implement Iψ.

Suppose we are given the quantum oracle Uf for a function f : [N ] → [N ] i.e. Uf acts on
H⊗H by Uf |x〉 | y〉 = | x〉 | y + f(x)〉 for all x, y ∈ [N ] and here + denotes addition mod
N .
It is promised that f is a one to one function. We wish to find an x ∈ [N ] with the
property that f(x) is a perfect square (for usual integer multiplication i.e. f(x) is 1 or 4
or 9 etc.) We should succeed with probability at least 0.9 (independently of the size of
N).
Show that the quantum query complexity of this task (for queries to Uf ) grows as O(N1/4).
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Let I,X,Z denote the identity operator and standard Pauli operators on a single qubit.
Let P1 denote the set comprising I,X,Z,XZ and their multiples by ±1 and ±i. Let
Pn = {A1 ⊗ A2 ⊗ . . . ⊗ An : Aj ∈ P1 for j = 1, . . . , n}. An n-qubit unitary operation
U is called a Clifford operation if it preserves Pn under conjugation i.e. for any
A1 ⊗A2 ⊗ . . . ⊗An ∈ Pn there is an A′

1
⊗A′

2
⊗ . . .⊗A′

n ∈ Pn such that

U † (A1 ⊗A2 ⊗ . . .⊗An)U = A′
1 ⊗A′

2 ⊗ . . . ⊗A′
n. (1)

You may assume that the Hadamard gate H, the phase gate S =

(

1 0
0 i

)

, and the

controlled-Z gate CZ are all Clifford operations (when acting on any of the n qubit lines).

(i) Suppose that U in eq. (1) is H or S or CZ, acting on any specified qubit line(s). Show
that if we are given the list A1, A2, . . . An then the list of operators A′

1
, A′

2
, . . . , A′

n may be
determined by a classical computation of only poly(n) time.

(ii) Let Z1 = Z ⊗ I ⊗ . . . ⊗ I denote Z acting on the first of n qubit lines. If |ψ〉 is any
n-qubit state, show that

〈ψ |Z1 |ψ〉 = p0 − p1 (2)

where p0 and p1 are the probabilities of obtaining outcomes 0 and 1 respectively, from a
computational basis measurement on the first qubit of |ψ〉.

(iii) Now let C = UN . . . U2U1 with N = O(poly(n)) be any poly-sized quantum circuit
of H, S and CZ gates on n qubit lines. Consider a computational process with C being
applied to any product input state | a1〉 | a2〉 . . . | an〉 and with the output being obtained
by a computational basis measurement on the first qubit line. Let p0 and p1 be the
probabilities of obtaining outputs 0 and 1 respectively. Show that if we are given the list
U1, . . . , UN of gates of C (including the lines on which they act), and the identities of
the 1-qubit states | a1〉 , . . . , | an〉, then we can classically compute p0 and p1 in classical
poly(n) time i.e. any such quantum process offers no computational time speed up over
classical computing (up to polynomial overheads).

(iv) Show that it is possible for circuits C of the type in (iii) to generate n-qubit states
|ψ〉 = C | 0〉 | 0〉 . . . | 0〉, from the starting state | 0〉 | 0〉 . . . | 0〉, such that each qubit of |ψ〉
is entangled with the subsystem comprising all the remaining qubits.
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(i) Define the spectral norm ||A|| of an operator A.
Let {Ui} and {Vi} be sets of m unitary operators with ||Ui − Vi|| < ǫ for i = 1, . . . ,m.
Show that ||Um . . . U1−Vm . . . V1|| < mǫ. [You may assume that the spectral norm satisfies
the triangle inequality.]

(ii) Let H =
∑M

k=1
Hk be a 2-local Hamiltonian on n qubits withM = O(n2), and suppose

that the operators Hk satisfy ||Hk|| < 1 for k = 1, . . . ,M .
Show how U = e−iH may be approximated to within ǫ in spectral norm, by a circuit of
2-qubit gates. The circuit size should scale as O(1/ǫ) and polynomially in n. You should
identify the degree of the polynomial growth in n. [You may use the Lie-Trotter product
formula without proof, but in that case, it should be clearly stated.]

END OF PAPER
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