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In this question EB←A is an entanglement-breaking operation and N D←C is an
arbitrary operation.

i. For systems A and B of finite Hilbert space dimension, any separable operator ηAB
on HA⊗HB can be written ηAB =

∑k
i=0

α(i)A ⊗β(i)B for some k ∈ N where the α(i)A
and β(i)B are positive semidefinite operators.

Using this fact, show that
EB←A = PB←ỸMỸ←A (1)

where MỸ←A : LA 7→ ∑k
y=0

|y〉〈y|ỸTrAE(y)ALA is the operation which measures a

POVM E on A and stores the result in Ỹ, and PB←Ỹ : LỸ 7→ ∑k
y=0

τ(y)BTrỸ|y〉〈y|ỸLỸ

is the operation which measures Ỹ in the computational basis, obtaining result Y ,
and prepares B in a state τ(Y )B.

ii. Let PX be a distribution on a finite alphabet AX , let ρ be a map from AX to states
of AC, and let

ρX̃AC =
∑

x

PX(x)|x〉〈x|X̃ ⊗ ρ(x)AC (2)

σX̃ỸD =MỸ←A ⊗N D←CρX̃AC (3)

ωX̃BD =PB←ỸσX̃ỸD. (4)

Show that I(X̃ : BD)ω = I(X̃ : B)ω + I(X̃B : D)ω − I(B : D)ω and hence

χ(EA←B ⊗N D←C) 6 χ(EB←A) + χ(N D←C),

where χ is the Holevo information, stating clearly any results you use.
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i. Let A and B be Hermitian operators on a Hilbert space of dimension d, and let
I denote the identity operator on this space. Let A =

∑

06j<d λj|αj〉〈αj | be an
eigendecomposition where the λj are in non-increasing order.

Given r ∈ {0, . . . , d} show that, if 0 6 B 6 I and TrB = r

TrAB 6
∑

06j<r

λj. (1)

ii. Let Q be a system of Hilbert space dimension dQ, and let ρQ be a state of Q with
eigendecomposition ρQ =

∑

06j<dQ
λj|αj〉〈αj | where the λj are in non-increasing

order. Suppose that there is a system K with Hilbert space dimension k 6 dQ such
that there exists an encoding operation CK←Q and a decoding operation DQ←K such
that

Fop(DQ←KCK←Q, ρQ)
2
> 1− ǫ. (2)

By considering Kraus representations of the encoding and decoding operation, show
that 1− ǫ 6

∑

06j<k λj.
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i. Let L be a linear operator on Hilbert space H of finite dimension.

Define |L| and define the trace norm ‖L‖1 and operator norm ‖L‖op of L.

If L has polar decomposition L = U |L| where U is a unitary operator on H, show
that if Z is a linear operator on H with ‖Z‖op 6 1 then

‖L‖1 > |TrZL|.

ii. Let σAB be a state of AB where A and B are systems of Hilbert space dimension d,
and let

φ+
AB

=
1

d

∑

06i,j<d

|i〉〈j|A ⊗ |i〉〈j|B.

Show that if σAB has positive partial-transpose then F (φ+AB, σAB) 6
1√
d
.

iii. Suppose that

ρAB =
1

2
(|0〉〈0|A ⊗ |0〉〈0|B + |1〉〈1|A ⊗ |1〉〈1|B) +

α

2
(|0〉〈1|A ⊗ |0〉〈1|B + |1〉〈0|A ⊗ |1〉〈0|B) .

For which values of α ∈ R is ρAB

(a) a density operator?

(b) a pure state?

(c) a separable state?
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i. State the Schmidt decomposition theorem.

ii. Suppose that

|ψ〉AB =
1√
15

(

2
√
2|0〉A ⊗ |0〉B − |0〉A ⊗ |1〉B +

√
2|1〉A ⊗ |0〉B + 2|1〉A ⊗ |1〉B

)

.

Write down ψA := TrB|ψ〉〈ψ|AB and ψB := TrA|ψ〉〈ψ|AB as matrices in the computa-
tional basis, and write down a Schmidt decomposition for |ψ〉AB.

iii. Let A and B be systems of Hilbert space dimension d, and let

|φ+〉AB =
1√
d

∑

06i<d

|i〉A ⊗ |i〉B

Show that if |ζ〉AB is a state vector with Schmidt rank r then

F (|φ+〉〈φ+|AB, |ζ〉〈ζ|AB) 6
√

r/d.
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Let ρ be a map from a finite set AX to the states of a system Q. Suppose that there
is a subset AM ⊆ AX of size k and a POVM E : AM → L(HQ) such that

1

k

∑

m∈AM

TrE(m)Qρ(m)Q = 1− ǫ.

Given a distribution PX on AX we define

ρX̃Q :=
∑

x∈A
X̃

PX(x)|x〉〈x|X̃ ⊗ ρ(x)Q, ρX̃ := TrQρX̃Q, and ρQ := TrX̃ρX̃Q.

For p ∈ [0, 1], let ω[p]Z̃ := (1− p)|0〉〈0|Z̃ + p|1〉〈1|Z̃.

1. Define the von Neumann entropy S and the quantum relative entropy D and give
expressions for S(ω[p]Z̃) and D(ω[p]Z̃‖ω[q]Z̃) in terms of p and q.

2. Show that there is a distribution PX and a POVM F : {0, 1} → L(HX̃Q) with result
Z such that, if the state of X̃Q is ρX̃Q then Pr(Z = 0) = 1− ǫ and if the state of X̃Q
is ρX̃ ⊗ ρQ then Pr(Z = 0) = 1/k.

3. Using the previous parts (or otherwise) show that

log(k) 6
supPX

I(X̃ : Q)ρ
X̃Q

+ 1

1− ǫ
.

END OF PAPER
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