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1 Viscous evolution and instability
(a) The evolution of a Keplerian accretion disk is governed by the diffusion equation
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where Σ is the disk’s surface density. The mean turbulent viscosity ν depends on radius
through ν = ν0 (r/r0)

5/2, with ν0 and r0 constants. The viscous torque vanishes on the
surface of the central object, taken to be at r = 0.

(i) Rewrite the diffusion equation in terms of dimensionless variables

x =
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3

4
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0

t,

and replace Σ by the dimensionless torque g = νΣ/(ν0Σ0), where Σ0 is a constant reference
density.

(ii) Suppose g depends solely on the similarity variable ξ = τ−1x−1/2. Obtain g from
the dimensionless diffusion equation, not forgetting to use the inner boundary condition.
Subsequently, plot the surface density at time τ = 1 and a later time.

(iii) Demonstrate that the total angular momentum is a constant but the total mass
increases linearly with time. [You may assume that the disk extends radially to infinity.]

(b) In standard notation, the vertical structure of an accretion disc is described by
the following equations

dp

dz
= −ρΩ2z,

dF

dz
=
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4
µΩ2,

dT
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= − 3κρF

16σT 3
, p =

kρT

µmmp
+

4σT 4

3c
.

(i) State what each of these equations represent. Assume that the gas pressure is
negligible compared to the radiation pressure, and that the opacity is a constant. Show
that the dynamical viscosity µ is also a constant.

(ii) In addition, suppose the alpha-prescription holds, so that µ ∝ p. By an order
of magnitude treatment, derive the following scaling for the viscous torque: νΣ ∼ Σ−1.

(iii) Finally, via a diagram (or otherwise) demonstrate that a localised overdensity
grows and that the disk is hence viscously unstable.
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2 Waves and ‘planets’ in the shearing sheet
The equations of a 3D compressible fluid in the shearing sheet are

∂tu+ u · ∇u = −1

ρ
∇p− 2Ωez × u−∇Φt, (1)

∂tρ+ u · ∇ρ = −ρ∇ · u, (2)

where u, ρ, and p are the velocity, density, and pressure. The tidal potential is
Φt = −(3/2)Ω2x2, and the fluid is assumed barotropic, p = p(ρ).

(a) Write down the linearised equations governing small axisymmetric 3D pertur-
bations to the equilibrium: ρ = ρ0 = constant, u = −(3/2)Ωx ey .

(b) Assume that the perturbations are ∝ exp(ikxx+ikzz− iωt), where kx and kz are
wavenumbers, and ω is a wave frequency. Hence derive the dispersion relation for waves
in the shearing sheet:

ω4 − (Ω2 + c2k2)ω2 +Ω2c2k2z = 0,

where k2 = k2x + k2z , and c2 = dp/dρ evaluated at ρ = ρ0.

(c) By taking an appropriate limit, give an expression for the frequency of inertial
waves. The phase velocity of a wave cp is parallel to its wavevector, while the group
velocity is defined by cg = (∂ω/∂ki)ei. Show that for inertial waves cp · cg = 0.

(d) For the rest of the question suppose the fluid is polytropic, so that p = Kρ1+1/n

where n is the polytopic index and K is a constant.

(i) Show that Equations (1) and (2) may be rewritten as

∂tu+ u · ∇u = −∇Q− 2Ωez × u−∇Φt,

n(∂tQ+ u · ∇Q) = −Q∇ · u,

where Q = (n+ 1)p/ρ is the enthalpy.

(ii) A steady model of a 2D ‘planet’ exhibits the following flow pattern:

u = α y ex − β x ey,

where α and β are positive constants. Compute the Q associated with this solution, and
show that

α =
β2 − 3Ω2

β
.

(Note that Q is determined up to an arbitrary additive constant.) What restriction must
be imposed on β for the solution to correspond to a discrete planet? Identify and give a
mathematical expression for the shape of its physical boundary.
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3 Maxwell’s Adams Prize essay on Saturn’s rings
Consider a large collection of identical particles located in a shearing sheet model of a

self-gravitating planetary ring. The position of the nth particle is denoted by [xn(t), yn(t)],
and its motion is governed by

ẍn − 2Ωẏn = 3Ω2xn + fn
x ,

ÿn + 2Ωẋn = fn
y ,

where an overdot indicates a time derivative and the gravitational acceleration arising
from the surrounding particles is

fn = Gm
∑

j 6=n

(xj − xn)ex + (yj − yn)ey

[(xj − xn)2 + (yj − yn)2]
3/2

.

Here m is the mass of a particle and G is the gravitational constant.

(a) Show that an infinite row of equally spaced particles, described by

xn = 0, yn = hn, ẋn = ẏn = 0,

where h is a fixed length, is an equilibrium solution.

(b) Perturb this equilibrium by a small displacement (x′n, y
′
n) and write down the

linearised equations governing its evolution.

(c) Suppose the perturbation undergoes a collective Fourier motion so that

x′n = X exp(st+ nhki), y′n = Y exp(st+ nhki),

where X and Y are complex constants, s is a growth rate, and k is a wavenumber. Show
that the formally infinite set of perturbation equations reduces to:

s2X − 2ΩsY = 3Ω2X − Gm

h3
F (hk)X,

s2Y + 2ΩsX = 2
Gm

h3
F (hk)Y,

where the function F is defined via

F (ξ) = 2
∞
∑

l=1

1− cos(lξ)

l3
.

The function F (ξ) is 2π-periodic. Show that it achieves its maximum value when its
argument ξ is an odd multiple of π.

(d) Write down and solve the dispersion relation for s. Prove that the ring is
unstable if

Gm

h3Ω2
>

13− 4
√
10

9F (π)
.
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