

MATHEMATICAL TRIPOS Part III

Monday, 30 May, 2016 9:00 am to 11:00 am

PAPER 318

MAGNETOHYDRODYNAMICS

Attempt **ALL** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

Conducting viscous fluid with density ρ , kinematic viscosity ν and magnetic diffusivity η flows steadily in the *x*-direction in the channel bounded by the planes $z = \pm L$ driven by a uniform pressure gradient $dp/dx = -\rho G$. There is a uniform magnetic field $B_0 \hat{\mathbf{z}}$ applied across the channel. The boundary conditions at $z = \pm L$ are that the velocity vanishes and the magnetic field is normal to the boundary.

(i) Justify the assertion that the velocity \mathbf{u} and induced magnetic field \mathbf{b} (so that the total field is $B_0\hat{\mathbf{z}} + \mathbf{b}$) are of the form $\mathbf{u} = (u(z), 0, 0)$, $\mathbf{b} = (b(z), 0, 0)$, where u, b satisfy the coupled equations

$$0 = G + \frac{1}{\mu_0 \rho} B_0 \frac{db}{dz} + \nu \frac{d^2 u}{dz^2}, \quad 0 = B_0 \frac{du}{dz} + \eta \frac{d^2 b}{dz^2},$$

with $u(\pm L) = b(\pm L) = 0$.

(ii) Solve these equations for u(z) and b(z) and obtain the expressions

$$\begin{split} u &= \frac{GL^2}{\nu H^2} (H \coth H) \left(1 - \frac{\cosh(Hz/L)}{\cosh H}\right), \\ b &= \frac{B_0}{\eta} \frac{GL^3}{\nu H^2} \left(-\frac{z}{L} + \frac{\sinh(Hz/L)}{\sinh H}\right), \end{split}$$

where *H* is the Hartmann number $H \equiv B_0 L/\sqrt{\mu_0 \rho \nu \eta}$. Derive an expression for the flux of fluid $Q = \int_{-L}^{L} u \, dz$ and sketch its form as a function of *H* keeping the other parameters fixed. Sketch also u(z) and b(z) when $H \gg 1$.

UNIVERSITY OF

 $\mathbf{2}$

A simple model of Parker dynamo waves, with a fluctuating α -effect and with diffusion ignored, can be written in appropriate units as the pair of complex equations (with D > 0)

$$\frac{dA}{dt} = D^2 f(t)B, \qquad \frac{dB}{dt} = \mathrm{i}A,$$

where $f(t) = 1, 0 < t < T, 2T < t < 3T, \dots$ and $f(t) = -1, T < t < 2T, 3T < t < 4T, \dots$

Consider the period 0 < t < T. Defining $\sigma = D(1 + i)/\sqrt{2}$, show that the general solution is

$$\begin{pmatrix} A \\ B \end{pmatrix} = P_+ \begin{pmatrix} \sigma \\ i \end{pmatrix} e^{\sigma t} + Q_+ \begin{pmatrix} -\sigma \\ i \end{pmatrix} e^{-\sigma t},$$

where P_+, Q_+ are complex constants. Deduce that

$$\begin{pmatrix} A(T) \\ B(T) \end{pmatrix} = \begin{pmatrix} \cosh \sigma T & -\mathrm{i}\sigma \sinh \sigma T \\ \frac{\mathrm{i}}{\sigma} \sinh \sigma T & \cosh \sigma T \end{pmatrix} \begin{pmatrix} A(0) \\ B(0) \end{pmatrix} \equiv \mathsf{M}^+ \begin{pmatrix} A(0) \\ B(0) \end{pmatrix}.$$

It may be assumed analogously that for the period T < t < 2T we have the related results

$$\begin{pmatrix} A \\ B \end{pmatrix} = P_{-} \begin{pmatrix} \sigma^* \\ i \end{pmatrix} e^{\sigma^* t} + Q_{-} \begin{pmatrix} -\sigma^* \\ i \end{pmatrix} e^{-\sigma^* t},$$

where $\sigma * = -i\sigma = D(1-i)/\sqrt{2}$ is the complex conjugate of σ , and

$$\begin{pmatrix} A(2T) \\ B(2T) \end{pmatrix} = \begin{pmatrix} \cosh \sigma^* T & -\mathrm{i}\sigma^* \sinh \sigma^* T \\ \frac{\mathrm{i}}{\sigma^*} \sinh \sigma^* T & \cosh \sigma^* T \end{pmatrix} \begin{pmatrix} A(T) \\ B(T) \end{pmatrix} \equiv \mathsf{M}^- \begin{pmatrix} A(T) \\ B(T) \end{pmatrix}.$$

Show that the matrices M^+ , M^- have determinant 1.

Deduce that the mean exponential growth rate of A, B over very large times is given by $\ln \Lambda/2T$, where Λ is the larger eigenvalue of the matrix $\mathsf{N} = \mathsf{M}^-\mathsf{M}^+$. Determine the determinant and trace of N in terms of D, T and hence find Λ . Setting T = 1 show that as $D \to \infty$ the growth rate $\to (\sqrt{2}D - \ln 2)/2$.

UNIVERSITY OF

3

Consider mean field dynamo action due to a time-dependent solenoidal velocity field

$$\boldsymbol{u} = \mathbb{R} \left(\boldsymbol{u}_1 \cos \Omega t + \boldsymbol{u}_2 \sin \Omega t \right)$$

where $\boldsymbol{u}_i = \hat{\boldsymbol{u}}_i e^{i\boldsymbol{k}_i \cdot \boldsymbol{x}}$ for distinct vectors $\boldsymbol{k}_1, \boldsymbol{k}_2$ with $|\boldsymbol{k}_1| = |\boldsymbol{k}_2| = k$. Assume that $\boldsymbol{B} = \boldsymbol{B}_0 + \boldsymbol{b}(\boldsymbol{x}, t)$ where \boldsymbol{B}_0 is a constant vector, and that products of fluctuating quantities can be neglected in the equation for \boldsymbol{b} . Show that \boldsymbol{b} takes the form

$$\boldsymbol{b} = \mathbb{R} \sum_{j=1,2} e^{i\boldsymbol{k}_j \cdot \boldsymbol{x}} (\boldsymbol{p}_j \cos \Omega t + \boldsymbol{q}_j \sin \Omega t)$$

and determine the p_j and q_j .

Using the result (which should be justified)

$$\frac{1}{2}\mathbb{R}(\mathrm{i}\hat{\boldsymbol{u}}_{j}^{*}\times\hat{\boldsymbol{u}}_{j})=H_{j}\boldsymbol{k}_{j}, \ j=1,2$$

for some constants H_j , show that if the emf $\mathcal{E} = \langle u \times b \rangle \equiv \alpha \cdot B_0$, (where $\langle \cdot \rangle$ denotes an average over space and time), then α takes the form

$$\alpha_{ij} = \frac{\eta k^2}{2(\Omega^2 + \eta^2 k^4)} (H_1 k_{1i} k_{1j} + H_2 k_{2i} k_{2j}).$$

Give the form of $\boldsymbol{\alpha}$ when $\boldsymbol{k}_1 = (k, 0, 0)$, $\boldsymbol{k}_2 = (0, k, 0)$, $H_1 = H_2$. Is mean field dynamo dynamo action possible? Give brief reasons for your answer (detailed calculation is not required).

END OF PAPER