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Conducting viscous fluid with density ρ, kinematic viscosity ν and magnetic
diffusivity η flows steadily in the x-direction in the channel bounded by the planes z = ±L
driven by a uniform pressure gradient dp/dx = −ρG. There is a uniform magnetic field
B0ẑ applied across the channel. The boundary conditions at z = ±L are that the velocity
vanishes and the magnetic field is normal to the boundary.

(i) Justify the assertion that the velocity u and induced magnetic field b (so that
the total field is B0ẑ+b) are of the form u = (u(z), 0, 0), b = (b(z), 0, 0), where u, b satisfy
the coupled equations

0 = G+
1

µ0ρ
B0

db

dz
+ ν

d2u

dz2
, 0 = B0

du

dz
+ η

d2b

dz2
,

with u(±L) = b(±L) = 0.

(ii) Solve these equations for u(z) and b(z) and obtain the expressions

u =
GL2

νH2
(H cothH)

(

1− cosh(Hz/L)

coshH

)

,

b =
B0

η

GL3

νH2

(

− z

L
+

sinh(Hz/L)

sinhH

)

,

where H is the Hartmann number H ≡ B0L/
√
µ0ρνη. Derive an expression for the flux of

fluid Q =
∫ L

−L
u dz and sketch its form as a function of H keeping the other parameters

fixed. Sketch also u(z) and b(z) when H ≫ 1.
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A simple model of Parker dynamo waves, with a fluctuating α-effect and with
diffusion ignored, can be written in appropriate units as the pair of complex equations
(with D > 0)

dA

dt
= D2f(t)B,

dB

dt
= iA,

where f(t) = 1, 0 < t < T, 2T < t < 3T, . . . and f(t) = −1, T < t < 2T, 3T < t < 4T, . . .

Consider the period 0 < t < T . Defining σ = D(1 + i)/
√
2, show that the general

solution is
(

A
B

)

= P+

(

σ
i

)

eσt +Q+

(

−σ
i

)

e−σt,

where P+, Q+ are complex constants. Deduce that

(

A(T )
B(T )

)

=

(

cosh σT −iσ sinhσT
i

σ
sinhσT coshσT

)(

A(0)
B(0)

)

≡ M
+

(

A(0)
B(0)

)

.

It may be assumed analogously that for the period T < t < 2T we have the related results

(

A
B

)

= P−

(

σ∗

i

)

eσ
∗t +Q−

(

−σ∗

i

)

e−σ∗t,

where σ∗ = −iσ = D(1− i)/
√
2 is the complex conjugate of σ, and

(

A(2T )
B(2T )

)

=

(

coshσ∗T −iσ∗ sinhσ∗T
i

σ∗
sinhσ∗T cosh σ∗T

)(

A(T )
B(T )

)

≡ M
−

(

A(T )
B(T )

)

.

Show that the matrices M+, M− have determinant 1.

Deduce that the mean exponential growth rate of A,B over very large times is given
by lnΛ/2T , where Λ is the larger eigenvalue of the matrix N = M

−
M

+. Determine the
determinant and trace of N in terms of D,T and hence find Λ. Setting T = 1 show that
as D → ∞ the growth rate → (

√
2D − ln2)/2.
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Consider mean field dynamo action due to a time-dependent solenoidal velocity field

u = R (u1 cos Ωt+ u2 sinΩt)

where ui = ûie
iki·x for distinct vectors k1,k2 with |k1| = |k2| = k. Assume that

B = B0+b(x, t) whereB0 is a constant vector, and that products of fluctuating quantities
can be neglected in the equation for b. Show that b takes the form

b = R

∑

j=1,2

eikj ·x(pj cos Ωt+ qj sinΩt)

and determine the pj and qj .

Using the result (which should be justified)

1

2
R(iû∗

j × ûj) = Hjkj , j = 1, 2

for some constants Hj, show that if the emf E = 〈u× b〉 ≡ α ·B0, (where 〈·〉 denotes an
average over space and time), then α takes the form

αij =
ηk2

2(Ω2 + η2k4)
(H1k1ik1j +H2k2ik2j).

Give the form of α when k1 = (k, 0, 0), k2 = (0, k, 0), H1 = H2. Is mean field dynamo
dynamo action possible? Give brief reasons for your answer (detailed calculation is not
required).
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