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You are reminded of the equations of ideal magnetohydrodynamics in the form

∂ρ

∂t
+ u · ∇ρ = −ρ∇ · u ,

∂p

∂t
+ u · ∇p = −γp∇ · u ,

ρ

(

∂u

∂t
+ u · ∇u

)

= −ρ∇Φ−∇p+
1

µ0

(∇×B)×B ,

∂B

∂t
= ∇× (u×B) ,

∇ ·B = 0 ,

∇2Φ = 4πGρ .

1

Explain why the equations of ideal MHD, in the absence of gravity, and excluding
the solenoidal constraint, can be written in the form

∂U

∂t
+Ai

∂U

∂xi
= 0 ,

where U is a multi-component vector and Ai is a square matrix for each Cartesian
component i. [You need not write out the matrices Ai explicitly.]

Show that the wave speed v of any nonlinear simple wave in ideal MHD satisfies
the inviscid Burgers equation, and use it to explain why such waves typically steepen and
form shocks. Give a brief explanation of how shocks can be handled without explicitly
including diffusive terms in the equations.

For a simple wave propagating in the x direction, calculate explicitly the eigenvectors
of the matrix Ax corresponding to the Alfvén waves. Hence, or otherwise, show that there
are special solutions of the MHD equations of the form

u = ux ex + f1(x− vt)ey + f2(x− vt)ez ,

B = Bx ex + f3(x− vt)ey + f4(x− vt)ez ,

representing nonlinear Alfvén waves on a uniform background, where v, ux, Bx, ρ and
p are constant. Give expressions for v and the corresponding relations between the four
functions fi. Explain why these simple waves do not steepen.

Part III, Paper 314



3

2

Throughout this question, a non-self-gravitating perfect gas without a magnetic
field undergoes isothermal flow, such that p = c2sρ with cs = constant, by means of energy
exchange with its surroundings.

Formulate the total energy equation for the gas, and show that, in order for it to
remain isothermal, energy must be lost from the gas at a rate −p∇ · u per unit volume
(or to be supplied to the gas at a rate +p∇ · u).

Consider a planar isothermal shock in its rest frame. By considering the conserva-
tion of mass and momentum, show that the upstream density ρ1, normal velocity u1 and
isothermal Mach number M1 = u1/cs are related to the downstream values ρ2, u2 and
M2 by

ρ2
ρ1

=
u1
u2

= M2

1 =
1

M2

2

.

Show that, if isothermality is maintained by cooling to the surroundings (as opposed to
heating by the surroundings), only compression shocks are physically acceptable.

Consider a steady, spherically symmetric, isothermal flow towards or away from a
body of mass M . Show that a sonic point occurs at r = rs, where

rs =
GM

2c2s
.

Show also that the isothermal Mach number M = |ur|/cs and the scaled radial coordinate
x = r/rs are related by

1

2
M2 − lnM =

2

x
+ 2 lnx+ constant .

Finally, show that the accretion rate of a steady transonic isothermal accretion flow is

π e3/2
G2M2ρ∞

c3s
,

where ρ∞ is the density of gas at rest at large distance.
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Starting from Maxwell’s equations, and explaining any assumptions made, derive
the ideal induction equation

∂B

∂t
= ∇× (u×B)

for the magnetic field in a conducting fluid.

Deduce carefully that (i) magnetic field lines can be identified with material curves,
and (ii) the magnetic flux through an open material surface is independent of time. [If you
use an equation for the time-evolution of a material surface element, you should derive it.]

In the process of star formation, a cloud of gas, threaded by a magnetic field,
collapses through several orders of magnitude in size. Use a scaling argument to determine
how the gravitational energy and the magnetic energy of the system depend on the
characteristic length-scale L of the cloud, assuming that the mass M of the cloud and
the magnetic flux Φ threading it are conserved during the collapse. Hence argue that, if
the gas pressure is negligible, the cloud can collapse only if

M

Φ
>

λ

(µ0G)1/2
,

where λ is a dimensionless number that need not be determined. Would you expect the
pressure to become more or less important (relative to gravity and magnetic fields) as the
collapse proceeds under (i) adiabatic or (ii) isothermal conditions?

4

A homogeneous incompressible fluid forms a uniform slab of thickness 2H and mass
per unit area Σ under its own gravity.

Consider infinitesimal disturbances with (possibly complex) frequency ω and (posi-
tive) wavenumber k in the plane of the slab. Show that the displacement can be derived
from a potential that satisfies Laplace’s equation. Show also that the gravitational poten-
tial perturbation satisfies Laplace’s equation both inside and outside the slab, but with a
discontinuous gradient at the boundaries of the slab. By combining appropriate solutions
of Laplace’s equation in the interior and exterior of the slab and applying the relevant
boundary conditions, show that disturbances with even symmetry satisfy the dispersion
relation

ω2 =
2πGΣ

H

[

kH tanh(kH)−
1

1 + coth(kH)

]

.

What is the physical origin of the positive and negative contributions within the square
brackets? Write down the corresponding relation for disturbances with odd symmetry.

By considering ω2 as a function of kH > 0 in each case, discuss the stability of the
equilibrium.
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