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1

Let g be a Euclidean metric on R
4, and let vol be a volume form. Define the Hodge–∗

operator of (R4, g, vol) and find an expression for ∗2 on Λ2(R4).

Define a decomposition of Λ2(R4) into self-dual (SD) and anti-self-dual (ASD) two–
forms, and show that H ∧ G = 0 if H is SD and G is ASD. Deduce that the SU(n)
Yang–Mills action action on R

4 is bounded from below by a multiple of the second Chern
number.

Let g = dx · dx+ dt2. Consider a gauge in which At = 0 vanishes to show that SD
Yang–Mills equations take the form

∂Ai

∂t
= −

1

2
ǫijkFjk, i, j, k = 1, 2, 3.

2

Let A ∈ SL(n,R) and M = {B ∈ SL(n,R), BT = B}. What is the dimension of
M? Show that B → ABAT defines a group action of SL(n,R) on M .

Assume that n = 2 and consider a basis

τ1 =

(

0 1
0 0

)

, τ2 =

(

1 0
0 −1

)

, τ3 =

(

0 0
1 0

)

of sl(2,R) to construct a representation of sl(2,R) by vector fields v1,v2,v3 on a two-
sheeted hyperboloid. Verify explicitly that vi form sl(2,R).

3

Write an essay on a theory of connections of principal bundles and its relationship
to Yang–Mills instantons.
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4

Define a Poisson structure on an n–dimensional manifold M in terms of an
antisymmetric tensor field ω ∈ Λ2(TM). Show that the Jacobi identity implies

n
∑

m=1

ωmi∂ω
jk

∂xm
+ ωmk ∂ω

ij

∂xm
+ ωmj ∂ω

ki

∂xm
= 0, (1)

where (x1, . . . , xn) is a local coordinate system on M , and i, j, k,m = 1, . . . , n.

Let g be an n–dimensional Lie algebra with a basis (v1, . . . ,vn) and structure
constants cijk, i. e. [v

i,vj ] = cijkv
k. Define a Poisson bracket on M by

{F,G} = cij
k
xk

∂F

∂xi
∂G

∂xj
, where F,G : M → R, (2)

and show that equations (1) are satisifed.

Let g be a Lie algebra generated by vector fields

v1 = y∂/∂z − z∂/∂y, v2 = z∂/∂x − x∂/∂z, v3 = x∂/∂y − y∂/∂x.

Write down the Hamilton equations corresponding to the Poisson structure (2) with the
Hamiltonian H = A(x1)2 +B(x2)2 + C(x3)2, where A,B,C are constants.

END OF PAPER
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