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(a) Consider the 3+1 formalism for general relativity with the spacetime line element

ds2 = −N2dt2 + (3)gij(dx
i −N idt)(dxj −N jdt) , (∗)

where N(t, xi) is the lapse function, N i(t, xi) is the shift vector, and (3)gij(x
i) is the

three-metric on constant time spacelike hypersurfaces Σ. (Latin indices i = 1, 2, 3.)

(i) The four-vector nµ = 1
N
(1, N i) is normal to Σ and defines the extrinsic curvature Kij

through its spacetime covariant derivative Kij ≡ −ni;j , for which you may assume the
connection is given by Γµ

νλ = 1
2g

µκ (gνκ,λ + gµκ,λ − gνλ,κ).

Show that the extrinsic curvature can be expressed as

Kij = − 1

2N

(

(3)gij,0 +Ni|j +Nj|i

)

,

where | denotes the covariant derivative on Σ.

(ii) Consider the conformal 3-metric (3)g̃ij = a2(t, xi)(3)gij where a6 ≡ (3)g = det((3)gij)
and, hence or otherwise, take the trace of the extrinsic curvature expression to find

K ≡ (3)gijKij = − 1

2N

(

(3)ġ
(3)g

+ 2N i
|i

)

.

In the context of an expanding universe (settingN i = 0), argue that −K
3 can be interpreted

as a locally defined Hubble parameter H(t, xi).

[Hint: You may assume that Tr(A−1dA/dt) = d(ln(detA))/dt for any matrix A with
non-vanishing determinant.]

(iii) In the long wavelength approximation in an expanding universe, we can approximate
the traceless part of the extrinsic curvature with the general solution K̃i

j ≈ Ci
j(x

k) a−3.
Given this and results above, briefly motivate the choice of the following metric to describe
nonlinear perturbations during inflation:

ds2 = −[(1 + Ψ)2 −B,iB
,i]dt2 + 2a2B,idt dx

i + a2e2ζδijdx
idxj . (1)

(b) When linearising the 3+1 metric (∗) about a background (flat) FRW universe, we
define the scalar perturbations by

N(t, xi) ≡ N̄(t)(1 + Ψ(t, xi)) , Ni ≡ −a2B,i ,
(3)gij = a2[(1− 2Φ)δij − 2E,ij ] ,

ρ = ρ̄ + δρ and P = P̄ + δP , where bars denote background homogeneous quantities.
Under the change of coordinates (t, xi) −→ (t̃, x̃i) = (t + ξ0, xi + ξi) (with ξi ≡ ∂iλ),
scalar metric perturbations transform as

δg̃ij = δgij − ḡij,0ξ
0 − ḡkjξ

k
,i − ḡikξ

k
,j .

In synchronous gauge, we take Ψ = 0 and B = 0. Show that there is a residual gauge
freedom in this gauge given by the coordinate transformation,

ξ0 =
C(xi)

N̄
, λ = C(xi)

∫

N̄

a2
dt+D(xi) ,

where C and D are arbitrary functions of xi only.
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(i) For scalar perturbations about a spatially-flat Robertson–Walker metric in the con-
formal Newtonian gauge, the Boltzmann equation for the dimensionless temperature
anisotropy of the CMB, Θ, can be written in Fourier space as the hierarchy

Θ̇l + k

(

l + 1

2l + 3
Θl+1 −

l

2l − 1
Θl−1

)

= −τ̇
[

(δl0 − 1)Θl − δl1vb +
1

10
δl2Θ2

]

+ δl0φ̇+ δl1kψ ,

where vb is the baryon velocity, φ and ψ are the metric potentials, and τ̇ = −an̄eσT is the
differential optical depth (with n̄e the unperturbed electron density, a the scale factor, and
σT the Thomson cross section). Overdots denote differentiation with respect to conformal
time η and k is the wavenumber. The Θl(η,k) are the angular moments of the Fourier
transform of Θ at wavevector k. Given that the energy density contrast of the CMB
photons is δγ = 4Θ0 and the bulk velocity vγ = −Θ1, write down the continuity and Euler
equations for the CMB.

If the baryons did not interact with the CMB, their Euler equation would be
v̇b + (ȧ/a)vb + kψ = 0. By considering the total 3-momentum density of the photons
and baryons, show that Thomson scattering modifies the baryon Euler equation to

v̇b +
ȧ

a
vb + kψ =

τ̇

R
(vb − vγ) ,

where the quantity R should be specified.

(ii) Explain briefly what is meant by the tight-coupling approximation and show, to leading
order in this approximation, that

v̇γ +
Ṙ

1 +R
vγ +

k

4(1 +R)
δγ + kψ = 0 .

Hence show that the photon density contrast satisfies the oscillator equation

δ̈γ +
Ṙ

1 +R
δ̇γ +

k2

3(1 +R)
δγ = 4φ̈+

4Ṙ

1 +R
φ̇− 4

3
k2ψ . (∗)

(iii) Define the angular power spectrum of the CMB temperature anisotropies, Cl.

Explain, with reference to approximate solutions of (∗), how the acoustic peaks
arise in the angular power spectrum. Show that for adiabatic primordial perturbations,
the peaks arise at multipoles

l ≈ nπχ∗/rs(η∗) ,

where n is a positive integer, χ∗ is the comoving distance to the CMB last-scattering
surface (which is at conformal time η∗), and rs(η∗) is the sound horizon at η∗. You should
provide an expression for rs(η∗).
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Consider tensor perturbations (gravitational waves) of a spatially-flat universe, for which
the line element is

ds2 = a2(η)
[

−dη2 + (δij + hij) dx
idxj

]

, (∗)
where a(η) is the scale factor at conformal time η. The metric perturbation hij is
symmetric and trace-free, and has vanishing divergence: ∂ih

i
j = 0, where hij ≡ δikhkj.

Throughout this question you should work to first order in the perturbation hij .

(i) A photon with energy ǫ/a and direction cosines eı̂, as measured relative to the
orthonormal tetrad

(E0)
µ = a−1δµ0 , (Ei)

µ = a−1

(

δµi − 1

2
hi

jδµj

)

,

has 4-momentum with coordinate components

pµ =
ǫ

a2

[

1, eı̂ − 1

2
hije

̂

]

.

Using the geodesic equation dpµ/dλ + Γµ
νρpνpρ = 0, with pµ = dxµ/dλ and λ an affine

parameter, show that the comoving energy of a photon, ǫ, satisfies

1

ǫ

dǫ

dη
+

1

2
ḣije

ı̂ê = 0 ,

where overdots denote partial differentiation with respect to conformal time.

[You may assume that the non-zero connection coefficients for the metric in (∗) are

Γ0
00 = H ,

Γ0
ij = Hδij +Hhij +

1

2
ḣij ,

Γi
j0 = Hδij + ḣij ,

Γi
jk = ∂(jh

i
k) −

1

2
δil∂lhjk ,

where H = ȧ/a is the conformal Hubble parameter and round brackets denote symmetri-
sation on the enclosed indices.]

(ii) The Boltzmann equation for the dimensionless temperature anisotropy of the CMB,
Θ(η,x, e), at linear order in tensor perturbations is

∂Θ

∂η
+ e ·∇Θ− 1

ǫ

dǫ

dη
= τ̇Θ− 3τ̇

16π

∫

dm̂Θ(m̂)
[

1 + (e · m̂)2
]

,

where τ̇ is the differential optical depth to Thomson scattering. Making the approximation
−τ̇ e−τ = δ(η − η∗), with the optical depth τ = 0 at the present time η0, show that the
temperature anisotropy observed at (η0,x0) is

Θ(η0,x0, e) ≈ −1

2

∫ η0

η∗

ḣij(η
′,x0 − χe)eı̂ê dη′ , (∗∗)
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where χ = η0 − η′. Here, η∗ is the time of last scattering. You should state clearly any
further approximations that you make.

(iii) Consider a single gravitational plane wave of helicity +2 with wavevector k = kẑ,
where ẑ is a unit vector in the z-direction and k is the wavenumber. The corresponding
metric perturbation is

hij(η,x) ∝ (δi1 + iδi2) (δj1 + iδj2)h
(+2)(η, kẑ)eikz ,

where h(+2)(η, kẑ) is the amplitude of the gravitational wave. The spherical multipoles of
the observed temperature anisotropy at x0 = 0 are such that

Θ(η0,0, e) =
∑

lm

ΘlmYlm(e) ,

where Ylm(e) are the spherical harmonics. By expressing e in spherical polar coordinates,
use (∗∗) to show that Θlm are only non-zero for m = 2.

For a very long wavelength gravitational wave, with kη0 ≪ 1, during matter
domination up to the present time we may take

h(+2)(η, kẑ) = h(+2)(kẑ)

[

1− 1

10
(kη)2 + · · ·

]

,

where h(+2)(kẑ) is the primordial amplitude of the wave. By expanding in kη0, show that
at leading order

Θ22 ∝ h(+2)(kẑ)(kη0)
2 and Θ32 = − i

3
√
7
(kη0)Θ22

for η0 ≫ η∗.

[You may wish to use

Y22(θ, φ) =
1

4

√

15

2π
sin2 θe2iφ ,

Y32(θ, φ) =

√
7

4

√

15

2π
cos θ sin2 θe2iφ . ]
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(a) (i) Briefly explain the implications of Wick’s Theorem for higher-order correlators of
a Gaussian random field ζG.

(ii) A local non-Gaussian model is constructed by adding the square of a Gaussian random
field ζG to itself as

ζ(x) = ζG(x) +
3
5fNL[ζ

2
G(x)− 〈ζ2G(x)〉] ,

where fNL is the non-Gaussianity parameter. Define the bispectrum B(k1, k2, k3) and
show, using the expression above, that the local-type bispectrum can be expressed as

Bloc(k1, k2, k3) =
6
5fNL

(

P (k1)P (k2) + P (k2)P (k3) + P (k3)P (k1)
)

,

given that the power spectrum P (k) in Fourier space is defined by

〈ζG(k1)ζG(k2)〉 = (2π)3P (k1)δ(k1 + k2) with k = |k|.
(b) Using the in-in formalism during inflation, the leading order correction to an operator
Q is given by the expectation value

〈Q(t)〉 = Re
〈

−2iQI(t)

∫ t

−∞(1−iE)
HI

int(t
′)dt′

〉

, (†)

where we will assume the interaction Hamiltonian HI
int for single-field inflation at third-

order is

HI
int = −M2

P l

∫

d3xa3ǫ2ζζ̇2 , (‡)

with slow-roll parameter ǫ (which you may assume is effectively constant) and scale factor
given by a ≈ −1/(Hτ) with Hubble constant H and conformal time τ (i.e. dt = adτ)
and ζ̇ = dζ/dt and ζ ′ = dζ/dτ . Assume that, in the interaction picture, the linear density
perturbation ζ is a Gaussian random field with power spectrum,

〈ζ(k, τ)ζ(k′, τ)〉 = (2π)3uk(τ)u
∗
k(τ) δ(k + k′) , (∗)

where the mode functions uk(τ) and their conformal time derivatives are

uk(τ) =
H

√

4ǫM2
Plk

3
(1 + ikτ) e−ikτ , u′k(τ) =

H
√

4ǫM2
Plk

3
k2τe−ikτ .

(i) Show that the three point correlator of ζ for the interaction Hamiltonian (‡) reduces
to the following terms,

〈ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)〉 = Re
(

− 2i

∫

dτ

∫

d3p1 d
3p2 d

3p3

× M2
P lǫ

2

(Hτ)2
uk1

(0)uk2
(0)uk3

(0)up1
(τ)u′p2

(τ)u′p3
(τ)

× (2π)3δ(p1 + p2 + p3)
[

δ(k1 + p1)δ(k2 + p2)δ(k3 + p3) + cyclic perms.
]

)

.
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(ii) Substitute the mode functions for the density field ζ and evaluate the integrals above
explicitly to show that the three-point correlator becomes

〈ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)〉 =

= (2π)3δ(k1 + k2 + k3)
H4

16ǫM4
Pl

1

(k1k2k3)3

(

k22k
2
3

K
+
k1k

2
2k

2
3

K2
+ cyclic perms.

)

,

where K = k1 + k2 + k3. Discuss any assumptions made in evaluating the integral.

(c) Consider the two bispectrum shapes given by the local-type non-Gaussian model
Bloc(k1, k2, k3) described in (a) and the single-field inflation bispectrum given in (b) which
we shall denote as Bsf(k1, k2, k3). By noting that the Planck satellite has obtained an
observational limit on the local non-linearity parameter |fNL| < 10, discuss the prospects
of obtaining a detection of the single-field bispectrum model (b).

[Hint: Note that the local bispectrum signal is dominated by the squeezed limit (e.g.
k1 ≪ k2, k3 with k2 ≈ k3) and compare with the single-field bispectrum.]

END OF PAPER
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