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(a) In lectures we assumed homogeneity and isotropy and used the Einstein equations to
obtain the Friedmann equations:

(
ȧ

a

)2

=
8πG

3
ρ− K

a2
,

ä

a
= −4πG

3
(ρ+ 3P ) .

Use them to derive the continuity equation,

ρ̇ = −3
ȧ

a
(ρ+ P ) .

The content of our universe today can be described by three fluids, radiation (Pr = 1/3ρr),
matter (Pm ≈ 0), and dark energy (PΛ = −ρΛ). Define what we mean by the critical
density ρcrit, use it to define the fractional densities Ωi, and calculate how they scale with
a(t)

(b) Rewrite the Friedmann equations in terms of the fractional densities today to obtain

ȧ2 = H2
0

(
Ωr,0

a2
+

Ωm,0

a
+ΩΛ,0a

2

)
−K

ä = −H2
0

(
Ωr,0

a3
+

Ωm,0

2a2
− ΩΛ,0a

)

In the absence of dark energy use the above, or otherwise, to name and describe
qualitatively the evolution of a in the case of: K > 0, K < 0, and K = 0.

(c) In the case of K < 0 make this concrete by deriving the parametric solution for a
universe containing only matter,

a(η) =
Ωm,0

2 (1− Ωm,0)
(cosh η − 1)

t(η) =
H−1

0 Ωm,0

2 (1− Ωm,0)
3/2

(sinh η − η)

where η should be determined. [You may use:

sinh−1 y =

∫
dy√
1 + y2

sinh2
(x
2

)
=

1

2
(cosh(x)− 1) ]
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(a) A flat universe which is both homogeneous and isotropic is described by the metric,

ds2 = a2(τ)
(
−dτ2 + δijdx

idxj
)
.

By considering a spatial gauge transformation x̃i = xi + ξi describe the gauge problem.

(b) Now, the FRW metric in flat space with only scalar perturbations has the form,

ds2 = a2(τ)

(
− (1 + 2A) dτ2 + 2∂iBdxidτ +

[
(1 + 2C) δij + 2

(
∂i∂j −

1

3
δij∇2

)
E

]
dxidxj

)
.

Consider a general scalar gauge transformation, x̃µ = xµ + ξµ, where ξ0 = T (τ,x) and
ξi = ∂iL(τ,x). Show that the metric transforms as,

gµν =
dx̃α

dxµ
dx̃β

dxν
g̃αβ ,

and use this to show any two of the following:

Ã = A− T ′ −HT ,

B̃ = B + T − L′ ,

C̃ = C −HT − 1

3
∇2L ,

Ẽ = E − L

where H is the comoving Hubble parameter

State why tensor perturbations are gauge invariant.

(c) One way to solve the gauge problem is to work with gauge invariant variables. A key
gauge invariant variable is the constant density curvature perturbation, ζ, defined by,

ζ ≡ −C +
1

3
∇2E +Hδρ

ρ̄′
.

Show ζ is gauge invariant. You may use the relations above for C and E but should derive
the gauge transformation relation for δρ by considering, or otherwise, the transformation
of the scalar quantity ρ(τ, xi) = ρ̄(τ) + δρ(τ, xi).

One key property of ζ is that it is conserved on superhorizon scales for adiabatic
perturbations. By specialising to the Newtonian gauge, where,

ζ = Φ− 1

3

δρ

ρ̄+ P̄
,

show that this is true. You may assume the following,

δρ′ = −3H (δρ+ δP ) + 3Φ′
(
ρ̄+ P̄

)
−∇ · q ,

δPnad ≡ δP − P̄ ′

ρ̄′
δρ , ∇ · v ∝

(
k

H

)2

.

State briefly why conservation of ζ is so important in cosmology.
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(a) Use the second law of thermodynamics, TdS = dU + PdV , for an adiabatically
changing volume to show that the total entropy density of a particle species is given by,

s =
ρ+ P

T
, (1)

up to an additive constant. Show explicitly that S = V s is conserved in equilibrium. For
radiation, s = c1 g⋆T

3 and ρ = c2 g⋆T
4. Use equation (1) to find c2/c1. [You may use

∂P/∂T = (ρ+ P )/T .]

(b) A universe consists of a gas of g⋆ degrees of freedom at the temperature T and a
massive, decoupled non-relativistic particle, φ, of mass m and initial abundance Y = nφ/s
which is large enough so that ρ ≈ ρφ. At the time t = td, all φ particles instantaneously
decay into radiation and quickly thermalise into the g⋆ degrees of freedom of the gas. Show
that the temperature at the time of decay can be written as,

T 3
d =

3M2
Pl

c1g⋆Y m t2d
,

where MPl denotes the reduced Planck mass. Justify any assumptions you make in reach-
ing this result. [You may assume that Γ = 1/td ≈ H at the time of decay.]

(c) Show that the ratio of the entropy density before and after the decay is given by,

safter
sbefore

= c1

(
3

c2

)3

4

g
1

4

⋆
Y m

√
td√

MPl
,

and argue why this quantity is greater than 1. Explain this apparent contradiction with
part (a).
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A two-field model of inflation has the action,

S =

∫ √−g

(
−1

2
gµν (∂µφ∂νφ+ ∂µχ∂νχ)− V (φ, χ)

)
,

with the scalar potential V = 1
2m

2
φφ

2 + 1
2m

2
χχ

2. Throughout this question you may
ignore metric fluctuations and assume that spacetime is well-described by the FRWmetric,
ds2 = −dt2 + a2(t)dx2. The field equations are then given by,

− 1√−g
∂µ

(√−g gµν∂νφ
)

= −m2
φφ ,

− 1√−g
∂µ

(√−g gµν∂νχ
)

= −m2
χχ .

(a) Write the field equations with respect to conformal time, dτ = 1/adt, using H =
a′(τ)/a(τ). Derive the equations of motion for the fluctuations u(τ,x) and v(τ,x) defined
as φ(τ,x) = φ̄(τ) + u(τ,x)/a(τ), χ(τ,x) = χ̄(τ) + v(τ,x)/a(τ). What are the equations

for the Fourier modes, uk(τ) and vk(τ)? [Recall that fk(τ) =
∫

d3x
(2π)3/2

exp(−ik ·x)f(τ,x).]

(b) Assume H2 < m2
χ < 2H2 and take H to be approximately constant during inflation.

Show that on superhorizon scales the equation for vk(τ) is solved by vk = c (kτ)
1

2
±ν/

√
2k

for some constant c, and determine ν. Are the corresponding solutions for χk constant,
growing, or decaying as τ → 0? [Take a(τ) ≈ −1/(Hτ) for τ < 0.]

(c) The quantum Heisenberg picture operator v̂k has the mode expansion,

v̂k = vkâk + v∗kâ
†
k
,

where [âk, â
†
k
] = δ3(k− k′). Compute the variance of the field fluctuation

〈
v̂(τ,x = 0), v̂†(τ,x = 0)

〉

in terms of the dimensionless power spectrum of v, ∆v ≡ (k3/2π2)|vk|2 and show that the
dimensionless power spectrum of δχ = v/a is given by,

∆δχ(k) = |c|2
(
H

2π

)2 ( k

aH

)3−2ν

.
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