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Let (M, g) be a spacetime and Σ a spatial hypersurface with future pointing, timelike
unit normal related in adapted coordinates to the lapse function α and the shift vector βi

(i = 1, 2, 3) by nµ = [α−1, −βiα−1].

(i) Give the definition of the spatial projection operator ⊥µ
α, of the spatial projection

(⊥T )αβ of a rank (0, 2) tensor Tαβ and show that

(⊥T )αβn
α = (⊥T )αβn

β = 0 .

(ii) The totally antisymmetric tensor ǫαβγδ on (M, g) is defined through ǫ0123 = |g|1/2,
acquiring a factor −1 for any exchange of two indices and ǫαβγδ = 0 if two or more
indices are equal. Here, g ≡ det gαβ. Let γij denote the spatial metric and γ ≡ det γij its
determinant. Use the relation g = −α2γ to show that in coordinates adapted to the 3 + 1
split, the 3-dimensional totally antisymmetric tensor ǫ̃ijk on (Σ, γ) is given by

ǫ̃ijk = ǫµijkn
µ .

(iii) The Weyl tensor on (M, g) is defined in terms of the Riemann tensor Rαβγδ , the Ricci
tensor Rαβ and the Ricci scalar R by

Cαβγδ ≡ Rαβγδ + gα[δRγ]β + gβ[γRδ]α +
1

3
Rgα[γgδ]β .

Its electric and magnetic part are defined as

Eαβ ≡ Cαρβσn
ρnσ ,

Bαβ ≡
1

2
ǫαλµνC

µν
βρn

λnρ .

The Gauss-Codazzi equations are given by

(⊥R)αβγδ = Rαβγδ + 2Kα[γKδ]β ,

⊥(Rαβγδ)n
δ = −DαKβγ +DβKαγ ,

whereDα andRαβγδ are the spatial covariant derivative and the Riemann tensor associated
with γαβ .

1) How are the Weyl and Riemann tensor related in a vacuum spacetime?
2) Show that in a vacuum spacetime on Σ, Eαβ = (⊥E)αβ and Bαβ = (⊥B)αβ.
3) Show that on a spatial hypersurface Σ of a vaccum spacetime (M, g),

Eαβ = k1 Rαβ + k2 KKαβ + k3 K
ν
βKνα ,

Bαβ = k4 ǫ̃α
µνDµKνβ ,

where k1, k2, k3 and k4 are real constants that you should calculate.
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(i) Derive the geodesic equation in coordinate form from the defining equation ∇XX = 0
of an affinely parametrized geodesic.

(ii) Consider the Vaidya metric

ds2 = gµνdx
µdxν = −

(

1−
2M(v)

r

)

dv2 + 2dv dr + r2dθ2 + r2 sin2 θ dφ2 .

Use the Euler-Lagrange equations of the Lagrangian

L = −gµν
dxµ

dτ

dxν

dτ
,

where τ denotes proper time, to calculate all non-vanishing Christoffel symbols for the
Vaydia metric.

(iii) Write down the r and v components of the geodesic equation for the special case of
radial geodesics where θ = const, φ = const. Show that (1) curves satisfying v = const,
are radial null geodesics and (2) that curves satisfying

dr

dv
=

1

2

(

1−
2M(v)

r

)

, (†)

are radial null geodesics.

(iv) Consider radial null geodesics satisfying Eq. (†). Show that if such a geodesic is given
by r = r0(v), the function M(v) must be

M(v) =
1

2
r0(v) [1− 2ṙ0(v)] ,

where the dot denotes d/dv.
Consider the special case r0(v) = βwn, where β > 0 and n > 1 are constants and

v = 2βwn + w , v > 0 , w > 0 .

Show that in the limit of small v, to leading order

M(v) = c1v
n .

Determine the constant c1.
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(a) Let M be a manifold, p ∈ M and A, B rank (1,1) tensors which define maps
A : Tp(M) → Tp(M), B : Tp(M) → Tp(M), with

A(X) : T ∗

p (M) → R , η 7→ A(X ,η) for all X ∈ Tp(M) ,

B(X) : T ∗

p (M) → R , η 7→ B(X ,η) for all X ∈ Tp(M) .

Define
C : Tp(M) → Tp(M) , X 7→ C(X) ≡ B(A(X)) .

Show that C is a tensor of rank (1,1), i.e. a multilinear map C : Tp(M) × T ∗

p (M) → R,

and determine the components Cα
β of C in terms of the components of A and B.

(b) Let M be a manifold, X, Y , Z smooth vector fields on M, f : M → R a smooth
function and let LX denote the Lie derivative along the vector field X.

(i) Give index free expressions for the result of the Lie derivative acting on a function and
the Lie derivative acting on a vector field, i.e. for LXf and LXY .

(ii) Show that the Lie derivative acting on 1) functions and 2) on vector fields satisfies

[

LX ,LY

]

= L[X,Y ] ,

and
[

[LX ,LY ],LZ

]

+
[

[LY ,LZ ],LX

]

+
[

[LZ ,LX ],LY

]

= 0 ,

where brackets denote the commutator, i.e. [LX ,LY ] = LXLY − LY LX .
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(i) Let (M,Γ) be a manifold with a torsion free connection Γ and a one parameter family
of geodesics γ : I×I ′ → M, I, I ′ ⊂ R, (s, t) 7→ γ(s, t). Let T be the tangent vector to the
geodesics γ(s = const, t) and S tangent to the curves γ(s, t = const). Use the definition of
the Riemann tensor, R(X ,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z for vector fields X,
Y , Z, to derive the equation of geodesic deviation

∇T∇TS = R(T ,S)T = Rα
βγδT

βT γSδeα ,

where at each point of the geodesics, {eα} is a basis of the tangent space.

(ii) In the weak field limit the metric is given by a perturbation hµν of order O(ǫ), ǫ ≪ 1,
on a Minkowski background ηαβ = diag(−1, 1, 1, 1): gαβ = ηαβ + hαβ. To order ǫ, the
Levi Civita connection and Riemann tensor are

Γµ
νρ =

1

2
ηµσ(∂ρhσν + ∂νhρσ − ∂σhνρ) ,

Rµνρσ =
1

2
(∂ρ∂νhµσ + ∂σ∂µhνρ − ∂ρ∂µhνσ − ∂σ∂νhµρ) .

Show that the components of the Riemann tensor are invariant under gauge transforma-
tions hµν → hµν + ∂µVν + ∂νVµ, where Vµ is of order O(ǫ).

(iii) Consider two test particles initially at rest in an inertial frame in Minkowski spacetime
with a separation vector Lµ. Under passage of a gravitational wave, represented by a
metric perturbation hµν of order O(ǫ), the separation vector is allowed to vary by a
small ξµ, i.e. is given by Lµ + ξµ with Lµ = const and ξµ = O(ǫ) may depend on time.
Determine the equation of geodesic deviation to linear order in the transverse traceless
gauge (h ≡ ηµνhµν = 0, ∂νhµν = 0) for the case of a planar gravitational wave propagating
in the x3 direction, given in this gauge by

hµν =









0 0 0 0
0 H+ H× 0
0 H× −H+ 0
0 0 0 0









eikµx
µ

, kµ = const .

Expand for this calculation the connection coefficients and Riemann tensor in terms of
the hµν and write your final result in the form ξ̈µ = . . ., where a dot denotes a derivative
with respect to coordinate time t = x0.

(iv) The quadrupole formula gives the energy flux of a gravitational wave in terms of the
quadrupole tensor Iij of its source as

〈

dE

dt

〉

=
G

5c5
〈...
Qij

...
Qij

〉

, Qij = Iij −
1

3
Ikkδij , Iij =

∫

T00y
iyjd3y .

Use this formula to compute 〈dE/dt〉 sourced by a point mass m harmonically oscillating
along the x3 axis with frequency ω and amplitude L.
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