MATHEMATICAL TRIPOS Part III

Monday, 30 May, 2016 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 309

GENERAL RELATIVITY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF CAMBRIDGE

1

Let (\mathcal{M}, g) be a spacetime and Σ a spatial hypersurface with future pointing, timelike unit normal related in adapted coordinates to the lapse function α and the shift vector β^i (i = 1, 2, 3) by $n^{\mu} = [\alpha^{-1}, -\beta^i \alpha^{-1}]$.

(i) Give the definition of the spatial projection operator $\perp^{\mu}{}_{\alpha}$, of the spatial projection $(\perp T)_{\alpha\beta}$ of a rank (0, 2) tensor $T_{\alpha\beta}$ and show that

$$(\perp T)_{\alpha\beta}n^{\alpha} = (\perp T)_{\alpha\beta}n^{\beta} = 0.$$

(ii) The totally antisymmetric tensor $\epsilon_{\alpha\beta\gamma\delta}$ on (\mathcal{M}, g) is defined through $\epsilon_{0123} = |g|^{1/2}$, acquiring a factor -1 for any exchange of two indices and $\epsilon_{\alpha\beta\gamma\delta} = 0$ if two or more indices are equal. Here, $g \equiv \det g_{\alpha\beta}$. Let γ_{ij} denote the spatial metric and $\gamma \equiv \det \gamma_{ij}$ its determinant. Use the relation $g = -\alpha^2\gamma$ to show that in coordinates adapted to the 3 + 1split, the 3-dimensional totally antisymmetric tensor $\tilde{\epsilon}_{ijk}$ on (Σ, γ) is given by

$$\tilde{\epsilon}_{ijk} = \epsilon_{\mu ijk} n^{\mu}$$
.

(iii) The Weyl tensor on (\mathcal{M}, g) is defined in terms of the Riemann tensor $R_{\alpha\beta\gamma\delta}$, the Ricci tensor $R_{\alpha\beta}$ and the Ricci scalar R by

$$C_{\alpha\beta\gamma\delta} \equiv R_{\alpha\beta\gamma\delta} + g_{\alpha[\delta}R_{\gamma]\beta} + g_{\beta[\gamma}R_{\delta]\alpha} + \frac{1}{3}R g_{\alpha[\gamma}g_{\delta]\beta} \,.$$

Its electric and magnetic part are defined as

$$E_{\alpha\beta} \equiv C_{\alpha\rho\beta\sigma}n^{\rho}n^{\sigma}, B_{\alpha\beta} \equiv \frac{1}{2}\epsilon_{\alpha\lambda\mu\nu}C^{\mu\nu}{}_{\beta\rho}n^{\lambda}n^{\rho}$$

The Gauss-Codazzi equations are given by

$$(\perp R)_{\alpha\beta\gamma\delta} = \mathcal{R}_{\alpha\beta\gamma\delta} + 2K_{\alpha[\gamma}K_{\delta]\beta} ,$$

$$\perp (R_{\alpha\beta\gamma\delta})n^{\delta} = -D_{\alpha}K_{\beta\gamma} + D_{\beta}K_{\alpha\gamma} ,$$

where D_{α} and $\mathcal{R}_{\alpha\beta\gamma\delta}$ are the spatial covariant derivative and the Riemann tensor associated with $\gamma_{\alpha\beta}$.

- 1) How are the Weyl and Riemann tensor related in a vacuum spacetime?
- 2) Show that in a vacuum spacetime on Σ , $E_{\alpha\beta} = (\perp E)_{\alpha\beta}$ and $B_{\alpha\beta} = (\perp B)_{\alpha\beta}$.

3) Show that on a spatial hypersurface Σ of a vaccum spacetime (\mathcal{M}, g) ,

$$E_{\alpha\beta} = k_1 \mathcal{R}_{\alpha\beta} + k_2 K K_{\alpha\beta} + k_3 K^{\nu}{}_{\beta} K_{\nu\alpha} ,$$

$$B_{\alpha\beta} = k_4 \tilde{\epsilon}_{\alpha}{}^{\mu\nu} D_{\mu} K_{\nu\beta} ,$$

where k_1, k_2, k_3 and k_4 are real constants that you should calculate.

UNIVERSITY OF

 $\mathbf{2}$

(i) Derive the geodesic equation in coordinate form from the defining equation $\nabla_X X = 0$ of an affinely parametrized geodesic.

(ii) Consider the Vaidya metric

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = -\left(1 - \frac{2M(v)}{r}\right)dv^{2} + 2dv\,dr + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta\,d\phi^{2}\,.$$

Use the Euler-Lagrange equations of the Lagrangian

$$L = -g_{\mu\nu}\frac{dx^{\mu}}{d\tau}\frac{dx^{\nu}}{d\tau}\,,$$

where τ denotes proper time, to calculate all non-vanishing Christoffel symbols for the Vaydia metric.

(iii) Write down the r and v components of the geodesic equation for the special case of radial geodesics where $\theta = \text{const}$, $\phi = \text{const}$. Show that (1) curves satisfying v = const, are radial null geodesics and (2) that curves satisfying

$$\frac{dr}{dv} = \frac{1}{2} \left(1 - \frac{2M(v)}{r} \right) \,, \tag{\dagger}$$

are radial null geodesics.

(iv) Consider radial null geodesics satisfying Eq. (†). Show that if such a geodesic is given by $r = r_0(v)$, the function M(v) must be

$$M(v) = \frac{1}{2}r_0(v) \left[1 - 2\dot{r}_0(v)\right] \,,$$

where the dot denotes d/dv.

Consider the special case $r_0(v) = \beta w^n$, where $\beta > 0$ and n > 1 are constants and

$$v = 2\beta w^n + w, \qquad v \ge 0, \quad w \ge 0.$$

Show that in the limit of small v, to leading order

$$M(v) = c_1 v^n \,.$$

Determine the constant c_1 .

UNIVERSITY OF

3

(a) Let \mathcal{M} be a manifold, $p \in \mathcal{M}$ and \boldsymbol{A} , \boldsymbol{B} rank (1,1) tensors which define maps $A: \mathcal{T}_p(\mathcal{M}) \to \mathcal{T}_p(\mathcal{M}), B: \mathcal{T}_p(\mathcal{M}) \to \mathcal{T}_p(\mathcal{M})$, with

4

$$egin{aligned} oldsymbol{A}(oldsymbol{X}) &: \mathcal{T}_p^*(\mathcal{M}) o \mathbb{R}\,, \quad oldsymbol{\eta} \mapsto oldsymbol{A}(oldsymbol{X},oldsymbol{\eta}) & ext{ for all }oldsymbol{X} \in \mathcal{T}_p(\mathcal{M})\,, \ oldsymbol{B}(oldsymbol{X}) &: \mathcal{T}_p^*(\mathcal{M}) o \mathbb{R}\,, \quad oldsymbol{\eta} \mapsto oldsymbol{B}(oldsymbol{X},oldsymbol{\eta}) & ext{ for all }oldsymbol{X} \in \mathcal{T}_p(\mathcal{M})\,. \end{aligned}$$

Define

$$oldsymbol{C}:\mathcal{T}_p(\mathcal{M})
ightarrow\mathcal{T}_p(\mathcal{M})\,,\qquadoldsymbol{X}\mapstooldsymbol{C}(oldsymbol{X})\equivoldsymbol{B}(oldsymbol{A}(oldsymbol{X}))$$

Show that C is a tensor of rank (1,1), i.e. a multilinear map $C : \mathcal{T}_p(\mathcal{M}) \times \mathcal{T}_p^*(\mathcal{M}) \to \mathbb{R}$, and determine the components $C_{\alpha}{}^{\beta}$ of C in terms of the components of A and B.

(b) Let \mathcal{M} be a manifold, X, Y, Z smooth vector fields on $\mathcal{M}, f : \mathcal{M} \to \mathbb{R}$ a smooth function and let \mathcal{L}_X denote the Lie derivative along the vector field X.

(i) Give index free expressions for the result of the Lie derivative acting on a function and the Lie derivative acting on a vector field, i.e. for $\mathcal{L}_{\mathbf{X}}f$ and $\mathcal{L}_{\mathbf{X}}\mathbf{Y}$.

(ii) Show that the Lie derivative acting on 1) functions and 2) on vector fields satisfies

$$\left[\mathcal{L}_{\boldsymbol{X}},\mathcal{L}_{\boldsymbol{Y}}\right]=\mathcal{L}_{\left[\boldsymbol{X},\boldsymbol{Y}\right]},$$

and

$$\left[[\mathcal{L}_{\boldsymbol{X}}, \mathcal{L}_{\boldsymbol{Y}}], \mathcal{L}_{\boldsymbol{Z}} \right] + \left[[\mathcal{L}_{\boldsymbol{Y}}, \mathcal{L}_{\boldsymbol{Z}}], \mathcal{L}_{\boldsymbol{X}} \right] + \left[[\mathcal{L}_{\boldsymbol{Z}}, \mathcal{L}_{\boldsymbol{X}}], \mathcal{L}_{\boldsymbol{Y}} \right] = 0,$$

where brackets denote the commutator, i.e. $[\mathcal{L}_X, \mathcal{L}_Y] = \mathcal{L}_X \mathcal{L}_Y - \mathcal{L}_Y \mathcal{L}_X$.

CAMBRIDGE

 $\mathbf{4}$

(i) Let (\mathcal{M}, Γ) be a manifold with a torsion free connection Γ and a one parameter family of geodesics $\gamma : I \times I' \to \mathcal{M}, \ I, I' \subset \mathbb{R}, \ (s,t) \mapsto \gamma(s,t)$. Let T be the tangent vector to the geodesics $\gamma(s = \text{const}, t)$ and S tangent to the curves $\gamma(s, t = \text{const})$. Use the definition of the Riemann tensor, $\mathbf{R}(\mathbf{X}, \mathbf{Y})\mathbf{Z} = \nabla_{\mathbf{X}}\nabla_{\mathbf{Y}}\mathbf{Z} - \nabla_{\mathbf{Y}}\nabla_{\mathbf{X}}\mathbf{Z} - \nabla_{[\mathbf{X},\mathbf{Y}]}\mathbf{Z}$ for vector fields \mathbf{X} , \mathbf{Y}, \mathbf{Z} , to derive the equation of geodesic deviation

$$\nabla_{\boldsymbol{T}} \nabla_{\boldsymbol{T}} \boldsymbol{S} = \boldsymbol{R}(\boldsymbol{T}, \boldsymbol{S}) \boldsymbol{T} = R^{\alpha}{}_{\beta\gamma\delta} T^{\beta} T^{\gamma} S^{\delta} \boldsymbol{e}_{\alpha} \,,$$

where at each point of the geodesics, $\{e_{\alpha}\}$ is a basis of the tangent space.

(ii) In the weak field limit the metric is given by a perturbation $h_{\mu\nu}$ of order $\mathcal{O}(\epsilon)$, $\epsilon \ll 1$, on a Minkowski background $\eta_{\alpha\beta} = \text{diag}(-1, 1, 1, 1)$: $g_{\alpha\beta} = \eta_{\alpha\beta} + h_{\alpha\beta}$. To order ϵ , the Levi Civita connection and Riemann tensor are

$$\Gamma^{\mu}_{\nu\rho} = \frac{1}{2} \eta^{\mu\sigma} (\partial_{\rho} h_{\sigma\nu} + \partial_{\nu} h_{\rho\sigma} - \partial_{\sigma} h_{\nu\rho}) , R_{\mu\nu\rho\sigma} = \frac{1}{2} (\partial_{\rho} \partial_{\nu} h_{\mu\sigma} + \partial_{\sigma} \partial_{\mu} h_{\nu\rho} - \partial_{\rho} \partial_{\mu} h_{\nu\sigma} - \partial_{\sigma} \partial_{\nu} h_{\mu\rho}) .$$

Show that the components of the Riemann tensor are invariant under gauge transformations $h_{\mu\nu} \to h_{\mu\nu} + \partial_{\mu}V_{\nu} + \partial_{\nu}V_{\mu}$, where V_{μ} is of order $\mathcal{O}(\epsilon)$.

(iii) Consider two test particles initially at rest in an inertial frame in Minkowski spacetime with a separation vector L^{μ} . Under passage of a gravitational wave, represented by a metric perturbation $h_{\mu\nu}$ of order $\mathcal{O}(\epsilon)$, the separation vector is allowed to vary by a small ξ^{μ} , i.e. is given by $L^{\mu} + \xi^{\mu}$ with $L^{\mu} = \text{const}$ and $\xi^{\mu} = \mathcal{O}(\epsilon)$ may depend on time. Determine the equation of geodesic deviation to linear order in the transverse traceless gauge ($h \equiv \eta^{\mu\nu} h_{\mu\nu} = 0$, $\partial^{\nu} h_{\mu\nu} = 0$) for the case of a planar gravitational wave propagating in the x^3 direction, given in this gauge by

$$h_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0\\ 0 & H_+ & H_\times & 0\\ 0 & H_\times & -H_+ & 0\\ 0 & 0 & 0 & 0 \end{pmatrix} e^{ik_\mu x^\mu}, \qquad k_\mu = \text{const}.$$

Expand for this calculation the connection coefficients and Riemann tensor in terms of the $h_{\mu\nu}$ and write your final result in the form $\ddot{\xi}^{\mu} = \ldots$, where a dot denotes a derivative with respect to coordinate time $t = x^0$.

(iv) The quadrupole formula gives the energy flux of a gravitational wave in terms of the quadrupole tensor I_{ij} of its source as

$$\left\langle \frac{dE}{dt} \right\rangle = \frac{G}{5c^5} \left\langle \ddot{Q}_{ij} \ddot{Q}_{ij} \right\rangle, \quad Q_{ij} = I_{ij} - \frac{1}{3} I_{kk} \delta_{ij}, \quad I_{ij} = \int T_{00} y^i y^j d^3 y d^3$$

Use this formula to compute $\langle dE/dt \rangle$ sourced by a point mass *m* harmonically oscillating along the x^3 axis with frequency ω and amplitude *L*.

[TURN OVER

END OF PAPER