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(i) A unit mass non-relativistic point particle on the x axis has the action

I =

∫

dλ
{

ẋp− ṫE + e [E −H(x, p)]
}

, H(x, p) =
1

2
p2 +

g

x2
,

where e(λ) is a Lagrange multiplier, g a constant, and an overdot means d/dλ. Write down
the equations of motion. Write down the canonical Poisson Bracket relations. What is the
Noether charge associated to the symmetry t→ t+constant? Let D = tE− 1

2xp and verify
that D is a constant of the motion. Find the infinitesimal symmetry transformations that
it generates. What is the Poisson bracket of D with E?

Now consider the following variations of the canonical variables for infinitesimal
parameter β(λ):

δβt = −t2β , δβx = −txβ , δβE = (2tE − xp)β , δβp = (tp − x)β .

Show that δβ(E −H) = 2t(E −H)β. Now find a variation δβe such that

δβI =

∫

dλ

{

β̇K +
d

dλ
(. . . )

}

for a function K that you should also find. Verify that the equations of motion imply
K̇ = 0, and compute the Poisson brackets of K with E and D. Comment briefly on your
result.

(ii) The Nambu-Goto action for an open string in a D-dimensional Minkowski spacetime
has a phase-space action of the form

I[X,P ; e, u] =

∫

dt

∫ π

0
dσ

{

ẊmPm − 1

2
e
(

P 2 + (TX ′)2
)

− uX ′mPm

}

.

Write down the equations of motion, and use them to determine the condition(s) that are
required for the total D-momentum to be a constant of the motion; i.e. for Ṗ = 0, where

Pm =

∫ π

0
dσ Pm .

Use your result to show that Ṗ = 0 for an open string with free ends.

Is P1 a constant of the motion for a string with endpoints fixed to the hyperplane
x1 = 0? If not, what happens to any momentum that escapes from the string?
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(i) In light-cone coordinates, {x+, x−, xI}, the metric of D-dimensional Minkowski space
is ds2 = 2dx+dx− + dxIdxI . How are these coordinates related to the standard cartesian
coordinates xm?

The antisymmetric tensor field Bmn, on D-dimensional Minkowski space, satisfies
the equation

�DBmn + ∂m∂
pBnp − ∂n∂

pBmp = 0 .

Verify that this equation is unchanged by the gauge transformation Bmn → Bmn+2∂[mαn],
for arbitrary vector field αn. Assuming that ∂− is invertible, show that the gauge invariance
is eliminated by the gauge fixing condition B−m = 0 (m = +, I). What are the independent
components of Bmn in this gauge, and what equation do they satisfy.

Explain briefly how your results are relevant to the spectrum of the closed Nambu-
Goto string. How can the string interact with a background antisymmetric tensor field
Bmn in a way that is invariant under a gauge transformation of Bmn.

(ii) An infinite Nambu-Goto string of unit tension, in a three-dimensional Minkowski
spacetime with cartesian coordinates {Xm;m = 0, 1, 2}, has the phase-space action

I =

∫

dt

∫

∞

−∞

dσ

{

ẊmPm − 1

2
e [P 2 + (X ′)2]− u [(Xm)′Pm]

}

.

By imposing the Monge gauge

X0 = t , X1 = σ ,

show that the constraints can be solved for P0 and P1 in terms of X2 ≡ Φ(t, σ) and
P2 ≡ Π(t, σ). Hence show that the canonical Hamiltonian in Monge gauge takes the form

H[Φ,Π] =

∫

∞

−∞

dσ
√

F (Φ′)F (Π) ,

for a function F that you should find (you may assume that H > 0). Given a solution
of the Monge-gauge equations of motions that satisfies Π = Φ′, show that it also satisfies
Φ̇ = Φ′. Interpret the particular solution Φ = k(σ+t) and Π = k for constant k. Comment
on the k > 1 case.
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(i) Write down the “quantum” action I[X, b, c, b̃, c̃] for the closed NG string in conformal
gauge including the Faddeev-Popov ghost action. Write down the commutator algebra of
the Noether charges {Ln, L̃n;n ∈ Z} associated to conformal invariance of I[X, b, c, b̃, c̃],
and explain without calculation how this allows a determination of the critical dimension.

(ii) Write an essay on the path-integral quantization of the Nambu-Goto string, with
the emphasis on features that lead to improved ultra-violet behaviour when compared to
General Relativity quantized as a Minkowski space interacting spin-2 QFT. You should
cover the following points:

• How the sum-over-worldsheets approach to the scattering of strings (e.g. those
in states representing gravitons) eliminates the point-like interaction vertices of
Feynman diagrams (and why this is relevant to UV divergences).

• How, in the Euclidean path integral, the sum over worldsheets reduces to a sum
over Riemann surfaces, leading to a string-loop expansion analogous to the Feynman
diagram loop expansion of QFT.

• How the string spectrum leads to a modification of the gravitational force at the
string scale. You should illustrate this point by stating, and then using, properties
of the Virasoro amplitude

A(s, t) ∝ Γ(−1− t)Γ(−1− s)Γ(−1− u)

Γ(u+ 2)Γ(s + 2)Γ(t+ 2)
(u = −4− s− t).

• The relevance of the modular group of Riemann surfaces, in particular the torus, in
the context of the string-loop expansion of scattering amplitudes.
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(i) A particle in a Minkowski spacetime has the action

I[x, p, ψ; e, χ] =

∫

dt

{

ẋmpm +
i

2
ψmψ̇nηmn − eH(x, p, ψ) − iχQ(x, p, ψ)

}

,

where ψm(t) are anti-commuting, as is the Lagrange multiplier χ(t). Write down the
canonical Poisson bracket relations and use them to find the Poisson bracket relations of
the particular constraint functions

Q = ψmpm , H =
1

2
p2 .

Hence show that the physical-state conditions of the quantum theory are equivalent to the
massless Dirac equation.

(ii) The open Ramond string in ten-dimensional Minkowski space has the following light-
cone gauge action:

IR =

∫

dt

{

ẋmpm +
i

2
d0 · d0 +

∞
∑

k=1

(

i

k
α−k · α̇k + id−k · ḋk

)

− 1

2
e0

(

p2 + 2πTNR

)

}

,

where the transverse oscillator variables (αk,dk) are 8-vectors. Write down an expression
for the Ramond level number NR in terms of these variables. Write down the canonical
(anti)commutation relations for the operators α̂k and d̂k (k ∈ Z). An oscillator vacuum
|0〉 is a state annihilated by both α̂k and d̂k for k > 0. Given an operator ordering such
that N̂R|0〉 = 0, show that the eigenvalues N of N̂R are non-negative integers. Why should
you expect N = 0 states to be massless?

Let d̂I0 (I = 1, . . . , 8) be the components of d̂0. What are the anticommutation
relations satisfied by the hermitian operators γI =

√
2 d̂I0? Given that |0〉 is an oscillator

vacuum, show that the eight states γI |0〉 are also oscillator vacua. Show further that
these eight states are linearly independent over R. Similarly, using that γ1|0〉 is an
oscillator vacuum, show that the eight states γIγ1|0〉 are also oscillator vacua, again
linearly independent over R; do they include |0〉?

Show that γ9 = γ1γ2 · · · γ8 is hermitian. Show too that γ29 is the identity operator.
Given that |0〉 is an eigenstate of γ9 with eigenvalue 1 (positive chirality) show that γI |0〉
are eigenstates with eigenvalue −1 (negative chirality). Show too that γIγ1|0〉 are positive
chirality states. Finally, show that any positive chirality state is orthogonal to any negative
chirality state and hence deduce that there are at least 16 independent oscillator vacua.
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