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(a) Recall the expansion for a Dirac field ψ(x) with mass m,

ψ(x) =
∑

p,s

[

bs(p)us(p)e−ip·x + ds†(p)vs(p)eip·x
]

,

where (/p−m)us(p) = 0, (/p+m)vs(p) = 0 and s = ±1
2 . Explain the meaning of bs, ds†, us

and vs. Assuming the results,

us(pP ) = γ0us(p) , vs(pP ) = −γ0vs(p) ,

P̂ bs(p)P̂−1 = ηP b
s(pP ) , P̂ ds†(p)P̂−1 = −ηPds†(pP ) ,

show that under a parity transformation (P),

ψ(x) 7→ P̂ψ(x)P̂−1 = ηP γ
0ψ(xP ) ,

ψ̄(x) 7→ P̂ ψ̄(x)P̂−1 = η∗P ψ̄(xP )γ
0 ,

where |ηP | = 1, xµP = (x0,−x) and pµP = (p0,−p).

(b) Under a charge-conjugation transformation (C),

ψ(x) 7→ ηCCψ̄
T ,

where γµT = −CγµC−1, |ηC | = 1 and you may assume that γ0T = γ0. Given
that ψ̄(x)ψ(x) is invariant under C, find a constraint on C. How do ψ̄(x)γµψ(x) and
ψ̄(x)γµγ5ψ(x) transform under P and C? [Here γ5 = −iγ0γ1γ2γ3 and you may assume
that γ5T = Cγ5C−1 and C−1 = CT .]

(c) Now consider an SU(3) gauge theory where ψ(x) is in the fundamental represen-
tation, with generators denoted by T a, and is coupled to the gauge bosons Aa

µ (a = 1, . . . 8).
Given that the relevant term in the Lagrangian is, igψ̄Aa

µT
aγµψ, and that this leads to

an interaction that is invariant under P and C, derive expressions for the transformation
of Aa

µT
a under P and C. [Hint: Recall that T a are matrices.]

Suppose that the following term is added to the Lagrangian,

Lθ(x) = θ ǫµνρσF a
µν(x)F

a
ρσ(x) ,

where θ is a real constant and,

F a
µνT

a = ∂µA
a
νT

a − ∂νA
a
µT

a + ig[Ab
µT

b, Ac
νT

c] .

Determine how F a
µνT

a transforms under CP and hence whether or not Lθ(x) leads to an
interaction that conserves CP.

(d) Give an example of a process where CP violation has been observed experimen-
tally. What is the minimum number of quark generations required for CP violation to be
possible in the Standard Model?
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(a) Consider a field theory for an n-component real scalar field φi (i = 1, . . . n) with
a Lagrangian that is invariant under global SO(n) transformations,

L =
1

2
∂µφi∂µφi −

1

2
m2φiφi −

λ

4
(φiφi)

2 , λ > 0 .

For both (i) m2 > 0 and (ii) m2 < 0, identify the relevant physical degrees of freedom and
their masses (ignoring any quantum corrections). For case (ii) explain how the symmetry
is spontaneously broken and identify the unbroken symmetry.

(b) Now consider an SU(2) gauge theory involving a 3-component real scalar field
φi and a gauge field Ba

µ (i, a = 1, . . . 3) with Lagrangian,

L =
1

2
(Dµφ)i(D

µφ)i −
1

2
m2φiφi −

λ

4
(φiφi)

2 − 1

4
F a
µνF

a,µν , λ > 0, m2 < 0 ,

where Dµ = ∂µ + igtaBa
µ, (t

a)jk = −iǫajk and F a
µν = ∂µB

a
ν − ∂νB

a
µ − gǫabcBb

µB
c
ν . Why,

without loss of generality, can the fluctuations of φ about the minimum be taken to be
φ(x) = (0, 0, v + η(x))T where η(x) is real? Discuss how the symmetry is spontaneously
broken by the vacuum, identify the unbroken symmetry and write the Lagrangian in terms
of physical fields. Give the masses of the physical fields (ignoring any quantum corrections)
and briefly summarize their interactions.

Explain briefly in what ways this theory, after adding couplings to fermions, could be
a suitable description of weak and electromagnetic interactions. In what crucial respects
does it differ from the electroweak part of the Standard Model?
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(a) In the Standard Model, the part of the Lagrangian that describes the coupling
of W -bosons to quarks and antiquarks is,

LI =
g

2
√
2

(

JµW+
µ + Jµ†W−

µ

)

where,

Jµ =
∑

q∈{u,c,t}

∑

q′∈{d,s,b}
Vqq′ q̄γ

µ(1− γ5)q′ .

Briefly describe how the CKM matrix elements Vqq′ arise. How many independent real
parameters are there in the CKM matrix in the Standard Model (with 3 generations of
quarks)? How many would there be in the analogous matrix if there were 4 generations
of quarks?

(b) Draw the tree-level Feynman diagram for the decayW+ → qq̄′ where q ∈ {u, c, t}
and q̄′ ∈ {d̄, s̄, b̄}.

Show that the decay rate for an unpolarised W+ to a quark-antiquark pair (qq̄′) is,

ΓW+→qq̄′ =
GF√
2

M3
W

6π
|Vqq′ |2 ,

where the masses of q and q̄′ and the strong interactions between them (i.e. hadronization

effects) are neglected, and GF√
2

= g2

8M2
W

. [Hint: The following expressions may be used

without proof:

〈0
∣

∣W+
µ

∣

∣W+(p)〉 = ǫµ(p) ,
∑

W spins

ǫµ(p)ǫν(p)
∗ = −gµν +

pµpν

M2
W

,

Tr(γµ1 . . . γµn) = 0 for n odd ,

Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) ,

Tr(γ5γµγνγργσ) = 4iǫµνρσ ,

and the decay rate for A(p) → B(k) + C(k′) is,

ΓA→BC =
1

2m

∫

d3k

(2π)32k0

∫

d3k′

(2π)32k′0
(2π)4δ(4)(p− k − k′)|M|2 ,

where particle A has mass m.]

List all possible combinations of q and q̄′ to which the W+ boson can decay in the
Standard Model. Calculate the total decay rate to all these combinations.

(c) In the limit of massless leptons, why is the decay rate for W+ → e+νe nonzero
whereas the decay rate for π+ → e+νe vanishes?
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(a) In the limit that neutrinos are massless, briefly describe the differences between
the interactions of electrons and the interactions of electron neutrinos in the Standard
Model. What is the experimental evidence that at least some flavours of neutrinos have
non-zero mass?

(b) Draw tree-level Feynman diagrams for the scattering processes νe + d→ e− + u

and νe + ū → e− + d̄. Briefly explain why, at energy scales far below MW , the effective
Lagrangian relevant for these processes is,

Leff = −GF√
2

[

ūeγ
α(1− γ5)uν

][

ūuγα(1− γ5)ud + v̄uγα(1− γ5)vd
]

,

where GF√
2
= g2

8M2
W

. [Throughout this question the mixing between different generations

and the masses of leptons, neutrinos and quarks can be neglected. You may also assume
that energies are such that Leff can be used.] Show that,

dσd(k)

dyq
≡ dσ

dyq

(

νe(p) + d(k) → e−(p′) + u(k′)
)

= G2
F A(s) ,

dσū(k)

dyq
≡ dσ

dyq

(

νe(p) + ū(k) → e−(p′) + d̄(k′)
)

= G2
F B(s, yq) ,

where A(s) and B(s, yq) are functions which you should find, yq = k·q
k·p , s = (p + k)2 and

q = p− p′ = k′ − k. [Hint: The following expressions may be used without proof:

Tr(γµ1 . . . γµn) = 0 for n odd ,

Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) ,

Tr(γ5γµγνγργσ) = 4iǫµνρσ ,

ǫαβσρǫαβλτ = −2(δσλδ
ρ
τ − δστ δ

ρ
λ) ,

and the differential cross section for A(pA) +B(pB) → C(pC) +D(pD) is,

dσ =
1

|~vA − ~vB |
1

4p0Ap
0
B

(

d3pC

(2π)32p0C

)(

d3pD

(2π)32p0D

)

(2π)4δ(4)(pA + pB − pC − pD)|M|2 .]

(c) Now consider the deep inelastic scattering of a neutrino off a hadronH containing
up and down quarks and antiquarks. In the parton model, working in a frame where the
hadron’s mass can be neglected,

dσH

dy
≡ dσ

dy

(

νe(p)+H(PH) → e−(p′)+X(PX)
)

=

∫ 1

0

[

dσd(ξPH)

dy
qd(ξ) +

dσū(ξPH)

dy
qū(ξ)

]

dξ ,

where the momentum of the interacting quark/antiquark is k = ξPH and qd(ξ), qū(ξ) are

parton distribution functions (PDFs). Show that, ξ = −q2

2PH ·q ≡ x and y ≡ PH ·q
PH ·p = yq.

[Hint: start by expanding out (ξPH + q)2 = 0.] Hence find an expression for d2σH

dydx
in terms

of the PDFs.

Part III, Paper 305 [TURN OVER



6

END OF PAPER

Part III, Paper 305


