MATHEMATICAL TRIPOS Part III

Friday, 27 May, 2016 1:30 pm to 4:30 pm

PAPER 211

ADVANCED FINANCIAL MODELS

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

Let W be a Brownian motion and let $S_t = S_0 e^{\mu t + \sigma W_t}$ for a real constant μ and positive constants σ, S_0 .

(a) Find μ such that the process S is a martingale in its natural filtration.

For the rest of the question, let μ be such that S is a martingale. Further, define a function by

$$F(v,m) = \int (e^{-v/2 + \sqrt{v}z} - m)^+ \phi(z) dz$$

for non-negative v, m where $\phi(z) = \frac{e^{-z^2/2}}{\sqrt{2\pi}}$ is the standard normal density.

(b) Fix positive constants T, K and let

$$C_t = S_t F\left((T-t)\sigma^2, \frac{K}{S_t}\right)$$

for $0 \leq t \leq T$. Show that C is a martingale.

Now let $\hat{S}_t = \mathbf{1}_{\{t \leq \tau\}} e^{\lambda t} S_t$ where τ is an exponential random variable with rate λ , independent of W.

(c) Show that \hat{S} is a martingale in its natural filtration.

(d) Let \hat{C} be a martingale in the filtration generated by \hat{S} , such that $\hat{C}_T = (\hat{S}_T - K)^+$. For any $0 \leq t \leq T$, express \hat{C}_t in terms of the parameters λ, σ, T, K , the function F, and the random variable \hat{S}_t .

 $\mathbf{2}$

Consider a continuous-time risk-free bond market, and let f(t,T) denote the forward rate at time t for maturity T.

3

(a) How is the spot interest rate r_t calculated in terms of the forward rates? How is the zero-coupon bond price P(t,T) calculated in terms of the forward rates?

Suppose the forward rates evolve as

$$df(t,T) = \sigma(t,T) \int_{t}^{T} \sigma(t,u) du \ dt + \sigma(t,T) dW_{t}$$

where the function $(t,T) \to \sigma(t,T)$ is bounded, continuous and not random, and where W is a Brownian motion defined on the probability space $(\Omega, \mathcal{F}, \mathbb{Q})$.

(b) Show that the discounted bond price $e^{-\int_0^t r_s ds} P(t,T)$ is a martingale. You may use a version of the stochastic Fubini theorem without justification.

For each T > 0, define a measure \mathbb{Q}_T on (Ω, \mathcal{F}_T) by

$$\frac{d\mathbb{Q}_T}{d\mathbb{Q}} = \frac{e^{-\int_0^T r_s ds}}{P(0,T)}.$$

(c) Show that the forward rate for maturity T is a \mathbb{Q}_T -martingale.

(d) Fix $0 < T_1 < T_2$. Express $\mathbb{E}^{\mathbb{Q}_{T_1}}[P(T_1, T_2)]$ in terms of the initial bond prices $P(0, T_1)$ and $P(0, T_2)$. Show that

$$\operatorname{Var}^{\mathbb{Q}_{T_1}}[\log P(T_1, T_2)] = \int_0^{T_1} \left(\int_{T_1}^{T_2} \sigma(t, u) du \right)^2 dt.$$

[You may use Itô's formula and Girsanov's theorem without proof.]

CAMBRIDGE

3

Let p be a given vector in \mathbb{R}^n , and let P be a bounded \mathbb{R}^n -valued random vector. Define a collection of random variables

4

$$\mathcal{Z} = \{ Z : Z > 0 \text{ almost surely and } \mathbb{E}(ZP) = p \}$$

and suppose that \mathcal{Z} is not empty.

(a) Suppose $H \in \mathbb{R}^n$ is not-random and such that $H \cdot p \leq 0 \leq H \cdot P$ almost surely. Prove that $H \cdot p = 0 = H \cdot P$.

Let X be a bounded random variable and x a constant such that

$$x \ge \mathbb{E}(ZX)$$
 for all $Z \in \mathcal{Z}$.

For each $\gamma > 1$ and $H \in \mathbb{R}^n$ let

$$F_{\gamma}(H) = e^{\gamma(H \cdot p - x)} + \mathbb{E}[e^{\gamma(X - H \cdot P)}].$$

Assume for each γ , the function F_{γ} has a unique minimiser H_{γ} .

(b) Show that

$$\frac{\partial}{\partial \gamma} F_{\gamma}|_{H=H_{\gamma}} \leqslant 0$$

(c) Show there exists a non-random $H^* \in \mathbb{R}^n$ such that

 $x \ge H^* \cdot p$ and $H^* \cdot P \ge X$ almost surely.

You may use without proof that $\sup_{\gamma>1} F_{\gamma}(H_{\gamma}) < \infty$ and $\sup_{\gamma>1} ||H_{\gamma}|| < \infty$.

Consider a two-asset, one-period market model, where the first asset is cash so that $B_0 = B_1 = 1$ and the second asset is a stock with $S_0 = 10$ and

$$\mathbb{P}(S_1 = 9) = \mathbb{P}(S_1 = 10) = \mathbb{P}(S_1 = 11) = \frac{1}{3}.$$

To this market, add a call option with strike K = 10 maturing at time 1.

(d) Find the super-replication strategy for the call with the smallest initial cost.

 $\mathbf{4}$

(a) What does it mean to say that a discrete-time market model is complete?

Consider a discrete-time model of a market with two assets: a numéraire with price process N and a stock with price process S. Suppose the market is complete, and that $N_{t+1} \ge N_t$ almost surely for all $t \ge 0$. Let C(T, K) be the initial replication cost of a European call option on the stock with strike K and maturity T.

(b) Show that $T \mapsto C(T, K)$ is increasing for each K > 0.

(c) Compute C(1, 18) in the case where $(N_0, S_0) = (10, 10)$ and

$$\mathbb{P}((N_1, S_1) = (15, 20)) = 1/2 = \mathbb{P}((N_1, S_1) = (20, 15))$$

Consider an option which matures at time T with payout $\left(\frac{1}{T}\sum_{t=1}^{T}S_t - K\right)^+$. [This is called an Asian option.] Let A(T, K) be the initial replication cost.

(d) Show that $A(T, K) \leq \frac{1}{T} \sum_{t=1}^{T} C(t, K)$ for all T > 0 and K > 0.

$\mathbf{5}$

Let $(Z_t)_{0 \leq t \leq T}$ be a given discrete-time integrable process adapted to the filtration $(\mathcal{F}_t)_{0 \leq t \leq T}$. Let $(U_t)_{0 \leq t \leq T}$ be its Snell envelope defined by

$$U_T = Z_T$$

$$U_t = \max\{Z_t, \mathbb{E}[U_{t+1}|\mathcal{F}_t]\} \text{ for } 0 \leq t \leq T - 1.$$

(a) Show that U is a supermartingale. Show that U is a martingale if Z is a submartingale.

Let $(S_t)_{0 \leq t \leq T}$ be such that the increments $S_1 - S_0, \ldots, S_T - S_{T-1}$ are independent and identically distributed, and let the filtration be generated by S. Fix a measurable function $f : \mathbb{R} \to \mathbb{R}$ and let $Z_t = f(S_t)$. Suppose that Z_t is integrable for each $t \geq 0$, and let U be the Snell envelope of Z.

(b) Show that there exists a deterministic function V such that $U_t = V(t, S_t)$.

(c) Prove that if the function f is convex then the functions $V(t,\cdot)$ are convex for each $0\leqslant t\leqslant T$.

[Recall that a function $\varphi : \mathbb{R} \to \mathbb{R}$ is called convex if

$$\varphi[\theta x + (1 - \theta)y] \leqslant \theta \varphi(x) + (1 - \theta)\varphi(y)$$

for all $x, y \in \mathbb{R}$ and $0 < \theta < 1$.]

Part III, Paper 211

6

Suppose $(W_t)_{t \ge 0}$ is a Brownian motion and $(S_t)_{t \ge 0}$ evolves as

 $dS_t = a(S_t)dW_t.$

6

Let $V: [0,T] \times \mathbb{R} \to \mathbb{R}_+$ be the unique solution to

$$\frac{\partial}{\partial t}V(t,S) + \frac{a(S)^2}{2}\frac{\partial^2}{\partial S^2}V(t,S) = 0$$
$$V(T,S) = g(S) \text{ for all } S \in \mathbb{R}.$$

Finally, let $\xi_t = V(t, S_t)$ for $0 \leq t \leq T$. Assume that the functions a, V, and g are smooth and bounded with bounded derivatives.

(a) Show that

$$\xi_t = \mathbb{E}[g(S_T)|\mathcal{F}_t]$$

where $(\mathcal{F}_t)_{t \ge 0}$ is the filtration generated by the Brownian motion.

Let $U: [0,T] \times \mathbb{R} \to \mathbb{R}$ be the unique solution to

$$\frac{\partial}{\partial t}U(t,S) + a(S)a'(S)\frac{\partial}{\partial S}U(t,S) + \frac{a(S)^2}{2}\frac{\partial^2}{\partial S^2}U(t,S) = 0$$
$$U(T,S) = g'(S) \text{ for all } S \in \mathbb{R}.$$

Let $\pi_t = U(t, S_t)$ for $0 \leq t \leq T$. Assume U is smooth and bounded with bounded derivatives.

(b) Show that

$$\xi_t = V(0,S_0) + \int_0^t \pi_s dS_s.$$

Let $(Z_t)_{t \ge 0}$ be the martingale defined by $Z_0 = 1$ and

$$dZ_t = Z_t a'(S_t) dW_t.$$

and define an equivalent measure $\hat{\mathbb{P}}$ with density Z_T .

(c) Show that

$$\pi_t = \mathbb{E}^{\mathbb{P}}(g'(S_T)|\mathcal{F}_t).$$

(d) Briefly comment on the financial significance of the random variables ξ_t and π_t in the context of a market with stock price $(S_t)_{t \ge 0}$.

[You may use Itô's formula and Girsanov's theorem without proof.]

END OF PAPER