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Let W be a Brownian motion and let St = S0e
µt+σWt for a real constant µ and

positive constants σ, S0.

(a) Find µ such that the process S is a martingale in its natural filtration.

For the rest of the question, let µ be such that S is a martingale. Further, define a
function by

F (v,m) =

∫

(e−v/2+
√
vz −m)+φ(z)dz

for non-negative v,m where φ(z) = e−z2/2√
2π

is the standard normal density.

(b) Fix positive constants T,K and let

Ct = StF

(

(T − t)σ2,
K

St

)

for 0 6 t 6 T . Show that C is a martingale.

Now let Ŝt = 1{t6τ}e
λtSt where τ is an exponential random variable with rate λ,

independent of W .

(c) Show that Ŝ is a martingale in its natural filtration.

(d) Let Ĉ be a martingale in the filtration generated by Ŝ, such that ĈT = (ŜT −K)+.
For any 0 6 t 6 T , express Ĉt in terms of the parameters λ, σ, T,K, the function F , and
the random variable Ŝt.
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Consider a continuous-time risk-free bond market, and let f(t, T ) denote the forward
rate at time t for maturity T .

(a) How is the spot interest rate rt calculated in terms of the forward rates? How is the
zero-coupon bond price P (t, T ) calculated in terms of the forward rates?

Suppose the forward rates evolve as

df(t, T ) = σ(t, T )

∫ T

t
σ(t, u)du dt+ σ(t, T )dWt

where the function (t, T ) → σ(t, T ) is bounded, continuous and not random, and where
W is a Brownian motion defined on the probability space (Ω,F ,Q).

(b) Show that the discounted bond price e−
∫ t
0
rsdsP (t, T ) is a martingale. You may use a

version of the stochastic Fubini theorem without justification.

For each T > 0, define a measure QT on (Ω,FT ) by

dQT

dQ
=

e−
∫ T
0

rsds

P (0, T )
.

(c) Show that the forward rate for maturity T is a QT -martingale.

(d) Fix 0 < T1 < T2. Express E
QT1 [P (T1, T2)] in terms of the initial bond prices P (0, T1)

and P (0, T2). Show that

VarQT1 [log P (T1, T2)] =

∫ T1

0

(
∫ T2

T1

σ(t, u)du

)2

dt.

[You may use Itô’s formula and Girsanov’s theorem without proof.]
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Let p be a given vector in Rn, and let P be a bounded Rn-valued random vector.
Define a collection of random variables

Z = {Z : Z > 0 almost surely and E(ZP ) = p}

and suppose that Z is not empty.

(a) Suppose H ∈ Rn is not-random and such that H · p 6 0 6 H · P almost surely. Prove
that H · p = 0 = H · P .

Let X be a bounded random variable and x a constant such that

x > E(ZX) for all Z ∈ Z.

For each γ > 1 and H ∈ Rn let

Fγ(H) = eγ(H·p−x) + E[eγ(X−H·P )].

Assume for each γ, the function Fγ has a unique minimiser Hγ .

(b) Show that
∂

∂γ
Fγ |H=Hγ 6 0

(c) Show there exists a non-random H∗ ∈ Rn such that

x > H∗ · p and H∗ · P > X almost surely.

You may use without proof that supγ>1 Fγ(Hγ) < ∞ and supγ>1 ‖Hγ‖ < ∞.

Consider a two-asset, one-period market model, where the first asset is cash so that
B0 = B1 = 1 and the second asset is a stock with S0 = 10 and

P(S1 = 9) = P(S1 = 10) = P(S1 = 11) =
1

3
.

To this market, add a call option with strike K = 10 maturing at time 1.

(d) Find the super-replication strategy for the call with the smallest initial cost.
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(a) What does it mean to say that a discrete-time market model is complete?

Consider a discrete-time model of a market with two assets: a numéraire with price
process N and a stock with price process S. Suppose the market is complete, and that
Nt+1 > Nt almost surely for all t > 0. Let C(T,K) be the initial replication cost of a
European call option on the stock with strike K and maturity T .

(b) Show that T 7→ C(T,K) is increasing for each K > 0.

(c) Compute C(1, 18) in the case where (N0, S0) = (10, 10) and

P((N1, S1) = (15, 20)) = 1/2 = P((N1, S1) = (20, 15))

Consider an option which matures at time T with payout
(

1
T

∑T
t=1 St −K

)+
. [This

is called an Asian option.] Let A(T,K) be the initial replication cost.

(d) Show that A(T,K) 6 1
T

∑T
t=1 C(t,K) for all T > 0 and K > 0.

5

Let (Zt)06t6T be a given discrete-time integrable process adapted to the filtration
(Ft)06t6T . Let (Ut)06t6T be its Snell envelope defined by

UT = ZT

Ut = max{Zt,E[Ut+1|Ft]} for 0 6 t 6 T − 1.

(a) Show that U is a supermartingale. Show that U is a martingale if Z is a submartingale.

Let (St)06t6T be such that the increments S1 − S0, . . . , ST − ST−1 are independent
and identically distributed, and let the filtration be generated by S. Fix a measurable
function f : R → R and let Zt = f(St). Suppose that Zt is integrable for each t > 0, and
let U be the Snell envelope of Z.

(b) Show that there exists a deterministic function V such that Ut = V (t, St).

(c) Prove that if the function f is convex then the functions V (t, ·) are convex for each
0 6 t 6 T .

[Recall that a function ϕ : R → R is called convex if

ϕ[θx+ (1− θ)y] 6 θϕ(x) + (1− θ)ϕ(y)

for all x, y ∈ R and 0 < θ < 1.]
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Suppose (Wt)t>0 is a Brownian motion and (St)t>0 evolves as

dSt = a(St)dWt.

Let V : [0, T ]× R → R+ be the unique solution to

∂

∂t
V (t, S) +

a(S)2

2

∂2

∂S2
V (t, S) = 0

V (T, S) = g(S) for all S ∈ R.

Finally, let ξt = V (t, St) for 0 6 t 6 T . Assume that the functions a, V , and g are smooth
and bounded with bounded derivatives.

(a) Show that
ξt = E[g(ST )|Ft]

where (Ft)t>0 is the filtration generated by the Brownian motion.

Let U : [0, T ]× R → R be the unique solution to

∂

∂t
U(t, S) + a(S)a′(S)

∂

∂S
U(t, S) +

a(S)2

2

∂2

∂S2
U(t, S) = 0

U(T, S) = g′(S) for all S ∈ R.

Let πt = U(t, St) for 0 6 t 6 T . Assume U is smooth and bounded with bounded
derivatives.

(b) Show that

ξt = V (0, S0) +

∫ t

0
πsdSs.

Let (Zt)t>0 be the martingale defined by Z0 = 1 and

dZt = Zta
′(St)dWt.

and define an equivalent measure P̂ with density ZT .

(c) Show that

πt = EP̂(g′(ST )|Ft).

(d) Briefly comment on the financial significance of the random variables ξt and πt in the
context of a market with stock price (St)t>0.

[You may use Itô’s formula and Girsanov’s theorem without proof.]
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