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For some positive integers n and m, we observe n balls placed in m bins, labelled
from 1 tom. Let S1, . . . , Sd non-empty disjoint subsets of {1, . . . ,m}, each with cardinality
k < m. Under distribution P0, the balls are placed independently and uniformly in the
m bins. Under distribution P1, an element j of {1, . . . , d} is drawn uniformly at random,
and conditionally on j, the balls are placed in the m bins with the following distribution
Qj, independently: We flip a coin with probability of heads π ∈ (0, 1). If it falls on heads,
the ball is placed uniformly in one of the k bins with a label in Sj, and if it falls on tails,
uniformly in the m bins.

We denote by bi ∈ {1, . . . ,m} the label of the bin in which ball i is placed. The
number of balls in bins with index in Sj is cj = |{i | bi ∈ Sj}|. We write ε = k/m.

(a) For any j ∈ {1, . . . , d}, give the distribution of cj , under P0 and Qj using the
parameter ε.

(b) Show without proof that if X has binomial distribution B(n, p), then X − np
is sub-Gaussian with parameter n/4. Use this to derive without proof a bound on the
probability that X − np > t, for all t > 0. State any theorem that you use.

(c) Fix δ ∈ (0, 1). Using the statistic C = max16j6d cj , give a test ψ such that
whenever

π(1− ε) >

√

log(d)

2n
+ 2

√

log(1/δ)

2n
,

we have
P0(ψ = 1) ∨P1(ψ = 0) 6 δ .

(d) Define the chi-square divergence between two distributions. Write χ2(P1,P0)
in terms of the likelihood ratios Qj/P0.

(e) Using without proof the fact that

χ2(P1,P0) =
(

1− 1

d

)

(1− π2)n +
1

d

(

1 + π2(1/ε − 1)
)n − 1 ,

show that for ν ∈ (0, 1/2), when

π
(

ε−1 − 1
)1/2

6

√

log(16ν2d)

n
,

we have

inf
ψ

P0(ψ = 1) ∨P1(ψ = 0) >
1

2
− ν ,

where the infimum is taken over all tests ψ.
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Let d > 2 be an integer and S be an unknown subset of {1, . . . , d} of k consecutive
integers (modulo d). Let u(S) be the unit vector of Rd defined by u(S) = 1S/

√
k (where

1S is the vector with ones in S, zeroes elsewhere), and by S the collection of these d
subsets.

For θ > 0, let Y be a real-valued random variable with distribution N (0, θ) and Z
be a random vector of Rd with distribution N (0, Id). Let X1, . . . ,Xn be n i.i.d. random
vectors of Rd such that

Xi = Yi u(S) + Zi ,

where Y1, . . . , Yn and Z1, . . . , Zn are 2n independent copies of respectively, Y and Z.

(a) Give the distributionPθ,S ofX1. What is the expectation of Σ̂ =
∑n

i=1XiX
⊤
i /n?

(b) Let X be a sub-Gaussian random variable with parameter σ2. Give, without
proof, a bound on the probability that X2 − E[X2] > t, for all t > 0. State the theorems
that you use.

(c) Fix δ ∈ (0, 1), let n > log(d/δ). Using the statistic Λ = maxS∈S u(S)
⊤Σ̂u(S),

give a test ψ such that for some constant C > 0, whenever

θ > C

√

log(d/δ)

n
,

we have
P⊗n

0 (ψ = 1) ∨max
S∈S

P⊗n
θ,S(ψ = 0) 6 δ ,

where we write P0 = P0,S without ambiguity, and ⊗n denotes n independent samples.

(d) Define the chi-square divergence between two distributions. Using without proof
the fact that for θ < 1/2,

E0

[

dPS

dP0

dPT

dP0

]

=
(

1− θ2
(

u(S)⊤u(T )
)2
)−1/2

,

show that for θ < 1/2

χ2(Pθ,n,P
⊗n
0 ) = ER

[(

1− θ2R2

k2

)−n/2]

− 1 6 ER

[

e
nθ

2
R

k

]

− 1 ,

where R is the cardinality of the intersection of two random subsets of {1, . . . , d} of size k

drawn independently and uniformly. [Hint: you can use that 1/(1− t) 6 e
t

1−t for t < 1/2]

(e) For ε ∈ (0, 1), θ < 1/2, and k 6 d1−ε , show that whenever

θ 6

√

ε log(αd)

n
,

we have for some constant νε,α that depends on ε and α, taking the infimum is taken over
all tests ψ.

inf
ψ

P⊗n
0 (ψ = 1) ∨max

S∈S
P⊗n
θ,S(ψ = 0) >

1

2
− νε,α .
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Let G be a given connected graph on n vertices labelled 1 through n, with a set of
m edges E. We seek to estimate a signal θ∗ ∈ R

n, where θ∗i is associated to vertex i. It
is assumed that this signal is “smooth over the graph”, i.e. that the coefficients of θ∗ are
not too different for two vertices that are connected. This is quantified by the function
s : Rn → R, defined by

s(θ) =
∑

(i,j)∈E

|θi − θj| .

We observe y, a noisy version of θ∗. For each 1 6 i 6 n, we have for z ∈ sGn(1)

yi = θ∗i + zi .

A m×n matrix D is called an incidence matrix of G if for each e = (i, j) ∈ E, the row De

satisfies De,i = 1, De,j = −1, and 0 everywhere else. As an example, for a square graph
(cycle graph on four vertices), an example of incidence matrix is









0 1 0 −1
−1 0 1 0
0 −1 0 1
1 0 −1 0









For λ > 0, the estimator θ̂ is defined by θ̂ ∈ argminθ∈Rn
1
n‖y − θ‖22 + λ‖Dθ‖1.

(a) Let D be an incidence matrix of G. Write s(θ) as a function of Dθ. Show that
this expression is valid for any incidence matrix. Show that for any θ ∈ R

n such that
Dθ = 0, we have θ = t1, for some t ∈ R.

(b) Show that

1

n
‖θ∗ − θ̂‖22 6

2

n
〈z, θ̂ − θ∗〉+ λ‖Dθ∗‖1 − λ‖Dθ̂‖1 .

(c) Let D† be the n × m pseudoinverse of D, i.e. such that D†D = In − Π1,
where Π1 = 11⊤/n is the orthonormal projector on the span of 1. Let λ be such that
‖(D†)⊤z‖∞ 6 nλ/2 with probability 1− δ. Show that it holds with probability 1− δ that

1

n
‖θ∗ − θ̂‖22 6 2λs(θ∗) +

2

n
‖Π1z‖2 ‖θ∗ − θ̂‖2 .

(d) Let A ∈ R
k×m be a matrix whose columns satisfy ‖A(i)‖2 6 1, and g a random

vector of Rk that is sub-Gaussian with parameter τ2. Stating the theorems that you use,
show that with probability 1− δ, we have

‖A⊤g‖∞ 6 τ
√

log(2m) + τ
√

log(1/δ) .

(e) Let L = max16e6m ‖D†
·,e‖2 be the maximum of the ℓ2 norm of the columns of

D† (or of the rows of (D†)⊤). Show that for a λ independent of θ∗ to be determined, it
holds with probability 1− 2δ that

1

n
‖θ∗ − θ̂‖22 6

4

1− t2
s(θ∗)L

n

√

log(2m) +
4

1− t2
s(θ∗)L

n

√

log(1/δ) +
1

t2(1− t2)

cδ
n
,
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for some constant cδ that only depends on δ, and some real t ∈ (0, 1).

[Hint: for all reals t, a, b, it holds that 2ab 6 t2a2 + b2/t2.]
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Let n be an even integer, and P the collection of subsets of {1, . . . , n} with n/2
elements. For an unknown set S ∈ P, a random graph G on n vertices is drawn by placing
edges independently between distinct vertices i, j with probability 1/2 if (i, j) ⊂ S or
(i, j) ⊂ Sc, and probability 1/2 − t/

√
n otherwise, where t is a fixed positive constant

smaller than
√
n/6. We denote by A the symmetric adjacency matrix of the graph G,

where Aij = 1 if there is an edge between i and j, 0 otherwise.

(a) What is the expectation of A, denoted by A0 = E[A]? Draw a schematic picture
when S = {1, . . . , n/2}. Show that A0+In/2 has rank 2, and give its eigen-decomposition.
The matrix M is defined by

M = A+ In/2−
(1

2
− t

2
√
n

)

U ,

where Uij = 1 for all i, j. What is the expectation of M , denoted by M0?

(b) State the Davis–Kahan curvature lemma. We define the estimator v̂ by
v̂ ∈ argmin‖v‖2=1 v

⊤Mv. Show that

E
[

‖v̂v̂⊤ − vv⊤‖F
]

6
c

t

for some constant c > 0.

(c) Let Ŝ =
{

i ∈ {1, . . . , n} | v̂i > 0
}

, and let ∆(Ŝ, S) = minσ∈{−1,1} |1Ŝ − σ1S |.
Explain what ∆(Ŝ, S) represents, in terms of the partitions (S, Sc) and (Ŝ, Ŝc). Show that

E[∆(Ŝ, S)] 6 n
2c

t
.

(d) For any S ∈ S, we denote by PS the distribution of G. For any S, S′ ∈ P, show
that

KL(PS ,PS′) =
∑

(i,j)∈∂S\∂S′

KL(Ber(1/2),Ber(1/2 − t/
√
n))

+
∑

(i,j)∈∂S′\∂S

KL(Ber(1/2 − t/
√
n),Ber(1/2)) ,

for properly defined sets ∂S and ∂S′. Show that for p, q ∈ (0, 1), we have

KL(Ber(p),Ber(q)) 6
(p − q)2

q(1− q)
.

(e) State Fano’s inequality. You can assume without proof the existence of M, a
subset of P such that for all distinct S, S′ ∈ M, ∆(S, S′) > n(1/2 − ε), and |M| > eε

2n,
for some ε ∈ (0, 1/2). Using this set, show that for some constant c′ > 0

inf
Σ̂

max
S∈P

PS

(

∆(Σ̂, S) > n(1/2 − 2ε)
)

> 1− c′t2

ε2
,

where the infimum is taken over all measurable estimators Σ̂ of S.
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