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Consider the process Xy = xo + fo $)dWs, t € [0,1], g € R, where (Wy)s>0 is
Brownian motion and o : [0,1] — R is a measurable, bounded, deterministic function.
For integers n > 1 the process (Xt)te[o,l] is observed at discrete times 0 = g, < t1, <

“<tpp=1 Forie{l,...,n}define AX;, = Xy,  — Xy, , ., Aty :=tin—ti 1, and
Ay, = maxicicn Ati . Let g : [0,1] — R be a measurable function bounded by R > 0.

(a) Let M, = Y g(tic1.0)[(AX;0)% — tiijna2(s)d8]. Show that there exists an
absolute constant D > 0 such that

E[(M2] < Do,
Now consider the estimator A, (g) := 327", g(ti1.)(AX;,)? for A(g fo ds.

(b) Let g satisfy in addition for some o € (0, 1] that [g(t) — g(s)| < Rt — s|*. Show that
there exists an absolute constant D > 0 such that

E[(An(9) = A(9))’] < DR?[j0"oo max(A,, AZ).

(c) Suppose that there are constants C' > 0 and 3 € (0,1] such that |02(s) — o2(t)| <
C|t — s|? for all s,t € [0,1]. Define g, := %]l[to,tg—i—hn} for 0 <ty < to+ hy, < 1 and

hy, = A}/ (2+28) " Show that there are constants D1, Dy > 0 depending only on C' such

that
A 2 4 An
E[(An(gn) = Algn))"] < Dillo" o7
E[(An(gn) — 0(t0)%)?] < (D1]l0?|loc + Do) AZ/FF2),
[ Hint: You may use without proof that AX;, ~ N(0, fti’ 7; (s)ds) and that AX;,,

i €{1,...,n}, are independent.]
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(a) Define the empirical characteristic function p, and the empirical characteristic process
C,, for i.i.d. real-valued random variables X1i,..., X,.

(b) Let Xi,...,X, be iid. real-valued random variables. Let ¢ be the characteristic
function of X; and ¢, be the empirical characteristic function of Xi,...,X,. If
Cove(Z1, Z2) := E[Z1Z5) — E[Z1]E[Z,] and Vare(Z,) := E[|Z; — E[Z1]|?] for complex-
valued random variables Z; and Zy, show that Cove(wn(u), vn(v)) = L(o(u —v) —

¢(u)p(—v)) and Varc(¢n(u)) < 1 for all u,v € R. "

(c¢) Foru € Rlet I'(u) be a complex-valued random variable such that (Re(I'(u)), Im(T'(u)))
is a centred normal random variable in R? such that Cove(I'(u),I'(u)) = 1 — |p(u)|?
and Cove (T'(u), T'(u)) = ¢(2u) — ¢(u)?. Show that for all u € R the empirical charac-
teristic process C, satisfies (Re(Cy(u)),Im(Cy(u))) — (Re(T'(u)), Im(I'(u))) as n — oo
in distribution.

[Hint: You may use without proof that if (Yy)nen are centred i.i.d. random vectors in
R?, then ﬁ > p_q Yy converges as n — oo in distribution to a centred normal random

vector with covariance E[Y1Y]']. ]

(d) Let X and e be independent real-valued random variables whose distributions are
absolutely continuous with respect to the Lebesgue measure with Lebesgue densities
px and pe, respectively. Let o, and ¢Y be the characteristic functions of e and
Y = X + ¢, respectively. Let ) be the empirical characteristic function of n i.i.d.
copies of Y. Suppose ¢ (u) # 0 for all u € R and let M), := SUP|y|<1/h [1/pe(u)].

Let K : R — R be an integrable function such that [ K (z)dz = 1. Define Kj(z) :=

+K(%) for h > 0. Let F denote the Fourier transform, i.e., Ff(u) = [*_ f(z)e™*dx
for all integrable functions f. Further assume supp(FK) C [—1,1]. Show that

- 9 1/2 N
</_ |]:[Kh](u)|2du> = Op <—h> :

Vhn

on (1) — " (u)
Pe(u
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Let the function b : R — R be such that for some o € (0,1] and R > 0,
we have [b(z) — b(y)] < R|zr — y|*. Let further ¢ : R — R be a measurable and
bounded function with inf,eg 0?(x) > o2 for some g? > 0. Suppose that there are
M,~ > 0 such that 2b(z)/0%(z) > 7 for all ¥ < —M and 2b(z)/c%(x) < —v for all
x > M. Let (X;)¢>0 be a stationary, strong solution of the stochastic differential equation
dX; = b(Xy)dt 4+ o(Xy)dWy, t > 0, where (W})¢>0 is a Brownian motion. Define for h > 0
and T >0

T

. Loy oo (X0)dX T

bT(fL’, h) — fOT [x—h, +h]< t) t if / ]]_[l._hﬂ._,'_h](Xt)dt >0
fo ]l[x—h,x-i-h](Xt)dt 0

and Z)T(:L', h) = 0 otherwise. Show that there exist Tp, hg > 0 such that for all h € (0, hg)
and for all T > T}

R 1
sup br(x,h) — b(x <Rh°‘+0p<—).
xe[—M/Q,M/2]| (= h) @)l vVTh

[ Hint: You may use without proof the It6 isometry and that the invariant measure p is
unique, its density [ is bounded and 1/ is locally bounded. Further you may use without
proof that there exists a constant C' > 0 such that for all 7" > 0 and for all u-integrable
functions f with [ f(z)du(z) =0

E [( / Tf(Xt)dt>2] <C1+T) (( /- |f<sc>|du<x>)2 + s wwr?) .

Let (X1)r>1 be ii.d. random vectors in RY such that E[||X1]|] < oo, where || X1||
denotes the Euclidean norm of Xj. Set Sy, (u) = Y p_;(cos({(Xk, u)) — E[cos((X,u))]) for
u € RY. Show that there exists some constant C' depending on d and E[[| X1||] only such
that S,, satisfies for all K > 2, for all integers n > 1 and for all R > 8/d

IF’< max  |Sp(u)| =

R
u€[-K,K]d 2

n log(nKZ)) < C(\/HK)(64d—R2)/(64d+64)'

[Hint: You may use without proof that if ¥7,...,Y,, are real-valued, centred, i.i.d. random
variables and |Y;| < M almost surely for some M > 0, then for all 7 > 0

n 2

i
P Vil =7 <2 —— ).
(]37) 2o (-55m)
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