MATHEMATICAL TRIPOS Part III

Friday, 3 June, 2016 1:30 pm to 3:30 pm

PAPER 209

STATISTICS FOR STOCHASTIC PROCESSES

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Consider the process $X_t = x_0 + \int_0^t \sigma(s) dW_s$, $t \in [0,1]$, $x_0 \in \mathbb{R}$, where $(W_s)_{s \ge 0}$ is Brownian motion and $\sigma : [0,1] \to \mathbb{R}$ is a measurable, bounded, deterministic function. For integers $n \ge 1$ the process $(X_t)_{t \in [0,1]}$ is observed at discrete times $0 = t_{0,n} < t_{1,n} < \cdots < t_{n,n} = 1$. For $i \in \{1, \ldots, n\}$ define $\Delta X_{i,n} := X_{t_{i,n}} - X_{t_{i-1,n}}$, $\Delta t_{i,n} := t_{i,n} - t_{i-1,n}$ and $\Delta_n := \max_{1 \le i \le n} \Delta t_{i,n}$. Let $g : [0,1] \to \mathbb{R}$ be a measurable function bounded by R > 0.

(a) Let $M_n := \sum_{i=1}^n g(t_{i-1,n})[(\Delta X_{i,n})^2 - \int_{t_{i-1,n}}^{t_{i,n}} \sigma^2(s) ds]$. Show that there exists an absolute constant D > 0 such that

$$\mathbb{E}[M_n^2] \leqslant DR^2 \|\sigma^4\|_{\infty} \Delta_n$$

Now consider the estimator $\hat{\Lambda}_n(g) := \sum_{i=1}^n g(t_{i-1,n}) (\Delta X_{i,n})^2$ for $\Lambda(g) := \int_0^1 g(s) \sigma^2(s) ds$.

(b) Let g satisfy in addition for some $\alpha \in (0,1]$ that $|g(t) - g(s)| \leq R|t - s|^{\alpha}$. Show that there exists an absolute constant $\tilde{D} > 0$ such that

$$\mathbb{E}[(\hat{\Lambda}_n(g) - \Lambda(g))^2] \leqslant \tilde{D}R^2 \|\sigma^4\|_{\infty} \max(\Delta_n, \Delta_n^{2\alpha}).$$

(c) Suppose that there are constants C > 0 and $\beta \in (0,1]$ such that $|\sigma^2(s) - \sigma^2(t)| \leq C|t-s|^{\beta}$ for all $s, t \in [0,1]$. Define $g_n := \frac{1}{h_n} \mathbb{1}_{[t_0,t_0+h_n]}$ for $0 < t_0 < t_0 + h_n < 1$ and $h_n = \Delta_n^{1/(2+2\beta)}$. Show that there are constants $D_1, D_2 > 0$ depending only on C such that

$$\mathbb{E}[(\hat{\Lambda}_n(g_n) - \Lambda(g_n))^2] \leqslant D_1 \|\sigma^4\|_{\infty} \frac{\Delta_n}{h_n^2},$$
$$\mathbb{E}[(\hat{\Lambda}_n(g_n) - \sigma(t_0)^2)^2] \leqslant (D_1 \|\sigma^4\|_{\infty} + D_2) \Delta_n^{2\beta/(2\beta+2)}.$$

[Hint: You may use without proof that $\Delta X_{i,n} \sim N(0, \int_{t_{i-1,n}}^{t_{i,n}} \sigma^2(s) ds)$ and that $\Delta X_{i,n}$, $i \in \{1, \ldots, n\}$, are independent.]

UNIVERSITY OF

2

- (a) Define the *empirical characteristic function* φ_n and the *empirical characteristic process* C_n for i.i.d. real-valued random variables X_1, \ldots, X_n .
- (b) Let X_1, \ldots, X_n be i.i.d. real-valued random variables. Let φ be the characteristic function of X_1 and φ_n be the empirical characteristic function of X_1, \ldots, X_n . If $\operatorname{Cov}_{\mathbb{C}}(Z_1, Z_2) := \mathbb{E}[Z_1\overline{Z_2}] \mathbb{E}[Z_1]\overline{\mathbb{E}}[Z_2]$ and $\operatorname{Var}_{\mathbb{C}}(Z_1) := \mathbb{E}[|Z_1 \mathbb{E}[Z_1]|^2]$ for complex-valued random variables Z_1 and Z_2 , show that $\operatorname{Cov}_{\mathbb{C}}(\varphi_n(u), \varphi_n(v)) = \frac{1}{n}(\varphi(u-v) \varphi(u)\varphi(-v))$ and $\operatorname{Var}_{\mathbb{C}}(\varphi_n(u)) \leq \frac{1}{n}$ for all $u, v \in \mathbb{R}$.
- (c) For $u \in \mathbb{R}$ let $\Gamma(u)$ be a complex-valued random variable such that $(\operatorname{Re}(\Gamma(u)), \operatorname{Im}(\Gamma(u)))$ is a centred normal random variable in \mathbb{R}^2 such that $\operatorname{Cov}_{\mathbb{C}}(\Gamma(u), \Gamma(u)) = 1 - |\varphi(u)|^2$ and $\operatorname{Cov}_{\mathbb{C}}(\Gamma(u), \overline{\Gamma(u)}) = \varphi(2u) - \varphi(u)^2$. Show that for all $u \in \mathbb{R}$ the empirical characteristic process \mathcal{C}_n satisfies $(\operatorname{Re}(\mathcal{C}_n(u)), \operatorname{Im}(\mathcal{C}_n(u))) \to (\operatorname{Re}(\Gamma(u)), \operatorname{Im}(\Gamma(u)))$ as $n \to \infty$ in distribution.

[Hint: You may use without proof that if $(Y_n)_{n\in\mathbb{N}}$ are centred i.i.d. random vectors in \mathbb{R}^d , then $\frac{1}{\sqrt{n}}\sum_{k=1}^n Y_k$ converges as $n \to \infty$ in distribution to a centred normal random vector with covariance $\mathbb{E}[Y_1Y_1^\top]$.]

(d) Let X and ϵ be independent real-valued random variables whose distributions are absolutely continuous with respect to the Lebesgue measure with Lebesgue densities p_X and p_{ϵ} , respectively. Let φ_{ϵ} and φ^Y be the characteristic functions of ϵ and $Y = X + \epsilon$, respectively. Let φ_n^Y be the empirical characteristic function of n i.i.d. copies of Y. Suppose $\varphi_{\epsilon}(u) \neq 0$ for all $u \in \mathbb{R}$ and let $\tilde{M}_h := \sup_{|u| \leq 1/h} |1/\varphi_{\epsilon}(u)|$.

Let $K : \mathbb{R} \to \mathbb{R}$ be an integrable function such that $\int_{-\infty}^{\infty} K(x) dx = 1$. Define $K_h(x) := \frac{1}{h}K(\frac{x}{h})$ for h > 0. Let \mathcal{F} denote the Fourier transform, i.e., $\mathcal{F}f(u) = \int_{-\infty}^{\infty} f(x)e^{iux} dx$ for all integrable functions f. Further assume $\operatorname{supp}(\mathcal{F}K) \subseteq [-1,1]$. Show that

$$\left(\int_{-\infty}^{\infty} \left|\frac{\varphi_n^Y(u) - \varphi^Y(u)}{\varphi_{\epsilon}(u)}\right|^2 |\mathcal{F}[K_h](u)|^2 \mathrm{d}u\right)^{1/2} = O_{\mathbb{P}}\left(\frac{\tilde{M}_h}{\sqrt{hn}}\right).$$

UNIVERSITY OF

3

Let the function $b : \mathbb{R} \to \mathbb{R}$ be such that for some $\alpha \in (0,1]$ and R > 0, we have $|b(x) - b(y)| \leq R|x - y|^{\alpha}$. Let further $\sigma : \mathbb{R} \to \mathbb{R}$ be a measurable and bounded function with $\inf_{x \in \mathbb{R}} \sigma^2(x) \geq \underline{\sigma}^2$ for some $\underline{\sigma}^2 > 0$. Suppose that there are $M, \gamma > 0$ such that $2b(x)/\sigma^2(x) \geq \gamma$ for all $x \leq -M$ and $2b(x)/\sigma^2(x) \leq -\gamma$ for all $x \geq M$. Let $(X_t)_{t \geq 0}$ be a stationary, strong solution of the stochastic differential equation $dX_t = b(X_t)dt + \sigma(X_t)dW_t, t \geq 0$, where $(W_t)_{t \geq 0}$ is a Brownian motion. Define for h > 0and $T \geq 0$

$$\hat{b}_T(x,h) = \frac{\int_0^T \mathbb{1}_{[x-h,x+h]}(X_t) \mathrm{d}X_t}{\int_0^T \mathbb{1}_{[x-h,x+h]}(X_t) \mathrm{d}t} \qquad \text{if } \int_0^T \mathbb{1}_{[x-h,x+h]}(X_t) \mathrm{d}t > 0$$

and $b_T(x,h) = 0$ otherwise. Show that there exist $T_0, h_0 > 0$ such that for all $h \in (0, h_0)$ and for all $T \ge T_0$

$$\sup_{x \in [-M/2, M/2]} |\hat{b}_T(x, h) - b(x)| \leq Rh^{\alpha} + O_{\mathbb{P}}\left(\frac{1}{\sqrt{Th}}\right).$$

[Hint: You may use without proof the Itô isometry and that the invariant measure μ is unique, its density $\tilde{\mu}$ is bounded and $1/\tilde{\mu}$ is locally bounded. Further you may use without proof that there exists a constant C > 0 such that for all $T \ge 0$ and for all μ -integrable functions f with $\int_{-\infty}^{\infty} f(x) d\mu(x) = 0$

$$\mathbb{E}\left[\left(\int_0^T f(X_t) \mathrm{d}t\right)^2\right] \leqslant C(1+T)\left(\left(\int_{-\infty}^\infty |f(x)| \mathrm{d}\mu(x)\right)^2 + \sup_{|x| \ge M} |f(x)|^2\right).$$

 $\mathbf{4}$

Let $(X_k)_{k \ge 1}$ be i.i.d. random vectors in \mathbb{R}^d such that $\mathbb{E}[||X_1||] < \infty$, where $||X_1||$ denotes the Euclidean norm of X_1 . Set $S_n(u) = \sum_{k=1}^n (\cos(\langle X_k, u \rangle) - \mathbb{E}[\cos(\langle X_k, u \rangle)])$ for $u \in \mathbb{R}^d$. Show that there exists some constant C depending on d and $\mathbb{E}[||X_1||]$ only such that S_n satisfies for all $K \ge 2$, for all integers $n \ge 1$ and for all $R > 8\sqrt{d}$

$$\mathbb{P}\left(\max_{u \in [-K,K]^d} |S_n(u)| \ge \frac{R}{2} \sqrt{n \log(nK^2)}\right) \le C(\sqrt{nK})^{(64d - R^2)/(64d + 64)}.$$

[Hint: You may use without proof that if Y_1, \ldots, Y_n are real-valued, centred, i.i.d. random variables and $|Y_1| \leq M$ almost surely for some M > 0, then for all $\tau > 0$

$$\mathbb{P}\left(\left|\sum_{k=1}^{n} Y_{k}\right| \ge \tau\right) \le 2 \exp\left(-\frac{\tau^{2}}{2nM^{2}}\right).$$

Part III, Paper 209

5

END OF PAPER

Part III, Paper 209