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Consider the process Xt = x0 +
∫ t
0 σ(s)dWs, t ∈ [0, 1], x0 ∈ R, where (Ws)s>0 is

Brownian motion and σ : [0, 1] → R is a measurable, bounded, deterministic function.
For integers n > 1 the process (Xt)t∈[0,1] is observed at discrete times 0 = t0,n < t1,n <
· · · < tn,n = 1. For i ∈ {1, . . . , n} define ∆Xi,n := Xti,n −Xti−1,n

, ∆ti,n := ti,n− ti−1,n and
∆n := max16i6n∆ti,n. Let g : [0, 1] → R be a measurable function bounded by R > 0.

(a) Let Mn :=
∑n

i=1 g(ti−1,n)[(∆Xi,n)
2 −

∫ ti,n
ti−1,n

σ2(s)ds]. Show that there exists an

absolute constant D > 0 such that

E[M2
n] 6 DR2‖σ4‖∞∆n.

Now consider the estimator Λ̂n(g) :=
∑n

i=1 g(ti−1,n)(∆Xi,n)
2 for Λ(g) :=

∫ 1
0 g(s)σ2(s)ds.

(b) Let g satisfy in addition for some α ∈ (0, 1] that |g(t) − g(s)| 6 R|t− s|α. Show that
there exists an absolute constant D̃ > 0 such that

E[(Λ̂n(g) − Λ(g))2] 6 D̃R2‖σ4‖∞max(∆n,∆
2α
n ).

(c) Suppose that there are constants C > 0 and β ∈ (0, 1] such that |σ2(s) − σ2(t)| 6
C|t − s|β for all s, t ∈ [0, 1]. Define gn := 1

hn
1[t0,t0+hn] for 0 < t0 < t0 + hn < 1 and

hn = ∆
1/(2+2β)
n . Show that there are constants D1,D2 > 0 depending only on C such

that

E[(Λ̂n(gn)− Λ(gn))
2] 6 D1‖σ4‖∞

∆n

h2n
,

E[(Λ̂n(gn)− σ(t0)
2)2] 6 (D1‖σ4‖∞ +D2)∆

2β/(2β+2)
n .

[ Hint: You may use without proof that ∆Xi,n ∼ N(0,
∫ ti,n
ti−1,n

σ2(s)ds) and that ∆Xi,n,

i ∈ {1, . . . , n}, are independent.]
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(a) Define the empirical characteristic function ϕn and the empirical characteristic process

Cn for i.i.d. real-valued random variables X1, . . . ,Xn.

(b) Let X1, . . . ,Xn be i.i.d. real-valued random variables. Let ϕ be the characteristic
function of X1 and ϕn be the empirical characteristic function of X1, . . . ,Xn. If
CovC(Z1, Z2) := E[Z1Z2]− E[Z1]E[Z2] and VarC(Z1) := E[|Z1 − E[Z1]|2] for complex-
valued random variables Z1 and Z2, show that CovC(ϕn(u), ϕn(v)) = 1

n(ϕ(u − v) −
ϕ(u)ϕ(−v)) and VarC(ϕn(u)) 6

1
n for all u, v ∈ R.

(c) For u ∈ R let Γ(u) be a complex-valued random variable such that (Re(Γ(u)), Im(Γ(u)))
is a centred normal random variable in R

2 such that CovC(Γ(u),Γ(u)) = 1 − |ϕ(u)|2
and CovC(Γ(u),Γ(u)) = ϕ(2u)−ϕ(u)2. Show that for all u ∈ R the empirical charac-
teristic process Cn satisfies (Re(Cn(u)), Im(Cn(u))) → (Re(Γ(u)), Im(Γ(u))) as n → ∞
in distribution.

[Hint: You may use without proof that if (Yn)n∈N are centred i.i.d. random vectors in

R
d, then 1√

n

∑n
k=1 Yk converges as n → ∞ in distribution to a centred normal random

vector with covariance E[Y1Y
⊤
1 ]. ]

(d) Let X and ǫ be independent real-valued random variables whose distributions are
absolutely continuous with respect to the Lebesgue measure with Lebesgue densities
pX and pǫ, respectively. Let ϕǫ and ϕY be the characteristic functions of ǫ and
Y = X + ǫ, respectively. Let ϕY

n be the empirical characteristic function of n i.i.d.
copies of Y . Suppose ϕǫ(u) 6= 0 for all u ∈ R and let M̃h := sup|u|61/h |1/ϕǫ(u)|.
Let K : R → R be an integrable function such that

∫∞
−∞K(x)dx = 1. Define Kh(x) :=

1
hK(xh) for h > 0. Let F denote the Fourier transform, i.e., Ff(u) =

∫∞
−∞ f(x)eiuxdx

for all integrable functions f . Further assume supp(FK) ⊆ [−1, 1]. Show that

(

∫ ∞

−∞

∣

∣

∣

∣

ϕY
n (u)− ϕY (u)

ϕǫ(u)

∣

∣

∣

∣

2

|F [Kh](u)|2du
)1/2

= OP

(

M̃h√
hn

)

.
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Let the function b : R → R be such that for some α ∈ (0, 1] and R > 0,
we have |b(x) − b(y)| 6 R|x − y|α. Let further σ : R → R be a measurable and
bounded function with infx∈R σ2(x) > σ2 for some σ2 > 0. Suppose that there are
M,γ > 0 such that 2b(x)/σ2(x) > γ for all x 6 −M and 2b(x)/σ2(x) 6 −γ for all
x > M . Let (Xt)t>0 be a stationary, strong solution of the stochastic differential equation
dXt = b(Xt)dt+ σ(Xt)dWt, t > 0, where (Wt)t>0 is a Brownian motion. Define for h > 0
and T > 0

b̂T (x, h) =

∫ T
0 1[x−h,x+h](Xt)dXt
∫ T
0 1[x−h,x+h](Xt)dt

if

∫ T

0
1[x−h,x+h](Xt)dt > 0

and b̂T (x, h) = 0 otherwise. Show that there exist T0, h0 > 0 such that for all h ∈ (0, h0)
and for all T > T0

sup
x∈[−M/2,M/2]

|b̂T (x, h) − b(x)| 6 Rhα +OP

(

1√
Th

)

.

[ Hint: You may use without proof the Itô isometry and that the invariant measure µ is
unique, its density µ̃ is bounded and 1/µ̃ is locally bounded. Further you may use without
proof that there exists a constant C > 0 such that for all T > 0 and for all µ-integrable
functions f with

∫∞
−∞ f(x)dµ(x) = 0

E

[

(
∫ T

0
f(Xt)dt

)2
]

6 C(1 + T )

(

(
∫ ∞

−∞
|f(x)|dµ(x)

)2

+ sup
|x|>M

|f(x)|2
)

. ]

4

Let (Xk)k>1 be i.i.d. random vectors in R
d such that E[‖X1‖] < ∞, where ‖X1‖

denotes the Euclidean norm of X1. Set Sn(u) =
∑n

k=1(cos(〈Xk, u〉) − E[cos(〈Xk, u〉)]) for
u ∈ R

d. Show that there exists some constant C depending on d and E[‖X1‖] only such
that Sn satisfies for all K > 2, for all integers n > 1 and for all R > 8

√
d

P

(

max
u∈[−K,K]d

|Sn(u)| >
R

2

√

n log(nK2)

)

6 C(
√
nK)(64d−R2)/(64d+64).

[Hint: You may use without proof that if Y1, . . . , Yn are real-valued, centred, i.i.d. random
variables and |Y1| 6 M almost surely for some M > 0, then for all τ > 0

P

(

∣

∣

∣

∣

n
∑

k=1

Yk

∣

∣

∣

∣

> τ

)

6 2 exp

(

− τ2

2nM2

)

. ]
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