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Let {ηt}t∈Z be a strong White Noise with variance 1 and {Xt}t∈Z be the process satisfying
∀t ∈ Z:

Xt −
1

4
Xt−1 = ηt − 3ηt−1

1. Give the definition of weak and strong White Noise.

2. Give the spectral density of X.

3. Is {ηt}t∈Z the innovation process of {Xt}t∈Z?

4. Determine the ARMA equation relating {Xt}t∈Z to its innovation process {εt}t∈Z.

5. Determine the MA (∞) form of X.

6. Compute its autocovariance function γX (h) , h ∈ Z.

7. Compute the autocovariance function γZ (h) , h ∈ Z of the process {Zt}t∈Z defined
∀t ∈ Z as follows:

Zt = a+ bXt + cX2
t ,

where a, b, c are some constants.
Hint: the following property of the Hermite polynomials might help.

The Hermite polynomial family Hn (x) is defined for non negative integers n by:

Hn (x) = (−1)n exp

(
x2

2

)(
d

dx

)n [

exp

(

−
x2

2

)]

.

One can show (not here !) that if U and V are two standard Gaussian random
variables with correlation ρ, then

E [Hn (U)Hm (V )] =

{
0, if n 6= m
n!ρn, if n = m.
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1. The Figure 1 below shows a time series plot (a realization from a stationary process)
and its associated (sample/empirical) AutoCorrelation Function (ACF) and Partial
ACF. How do you select a model order from ACF and PACF ? What would be your
modeling advices in this case? Justify your answer. Could you get any additional
information out of these ACF and PACF?

2. What is the periodogram ? Give its formula when computed on T observations
X1, . . . ,XT of a zero mean stationary process {Xt} ? Is it a good estimator (justify
your answer)?

3. We have at our disposal a sample of T observations X1, . . . ,XT from a stationary
process {Xt}t∈Z with mean µ.

• Assume that its autocovariance function γX (h) satisfies
∑

h∈Z |γX (h)| < ∞.

Prove that TVar
(
X̄T

)
→

∑

h∈Z |γX (h)|, where X̄T = 1
T

∑T
t=1 Xt is the

empirical mean.

• Under extra conditions one can show that the Central Limit Theorem applies.
What can you say about the validity of the CLT when dealing with correlated
data?

• Now the process X is given. It is a stationary and causal AR(1) process
defined ∀t ∈ Z:

Xt = m+ φXt−1 + εt, εt

iid
︷︸︸︷
∼ N

(
0, σ2

ε

)

– Compute its mean µ = E (Xt)

– What is the conditional law of Xt |Xt−1 = xt−1 ?

– Compute the conditional Maximum likelihood estimator µ̂ of µ; is it
unbiased ? Find its variance and check that it is consistent.
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Figure 1
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1. Figure 2 wrongly associates 4 time series plots (on the left) to 4 characteristic
functions (on the right). The characteristic functions are either autocorrelation
functions or spectral densities. Connect every time series to their characteristic
function (justify your answer).

2. How would you define non stationary processes (in words)? Which of the previous
models exhibit such non stationary behavior? Give 3 ways that are used to deal
with some nonstationary behavior.

3. Consider the following processes defined ∀t ∈ Z

Yt = cos

(
2πt

S

)

+ εt

Zt = cos

(
2πt

S

)

εt

where εt

iid
︷︸︸︷
∼ N

(
0, σ2

)
and S ∈ N

∗.

• Are these processes stationary? If not, describe the nature of their nonsta-
tionarity.

• Prove that, the application of an appropriate differentiation operation to {Yt}
yields a stationary process.

• Apply the same differentiation operator to {Zt}. What are the consequences?
Comment on this result from a practical point of view.

• Show that {Zt} is periodically correlated.

4. We now turn our attention to periodically correlated processes and the associated
Periodic ARMA models. In this question we consider a causal centered Periodic
AR(1) of period T :

XnT+ν = φ (ν)XnT+ν−1 + σ (ν) εnT+ν

where ν = 1, . . . , T is the season and n = 0, . . . , N is the period. We define the
periodic autocovariance function γν (h) = E [XnT+νXnT+ν−h]. We can estimate it
using a sample version that we just write γ̂ν (h). Note also that γν (h) = γnT+ν (h)
and γν (−h) = γν+h (h):

• Find the Yule-Walker equations.

• From the previous part deduce an estimator of φ (ν) and of σ (ν) for ν =
1, . . . , T .
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Figure 2: Time Series data on the left; ACF or spectrum on the right. Which characteristic
function for which time series ?
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(a) Present the Box-Muller algorithm to generate X1,X2
iid
∼ N(0, 1) from U1, U2

iid
∼

Unif [0, 1], and prove that it works.

(b) We want to estimate the mean of the truncated normal distribution (with density

f(x) = φ(x)
∫
1

0
φ(x)dx

, where φ() denotes the standard normal density). Apply the

importance sampling with a right choice of importance distribution. What is the
importance weight in this case? Now alternatively give an estimate of the mean by
simulating from the standard normal distribution and keeping the draws in [0, 1].
Explain why importance sampling works better.

(c) Given X1, . . . ,Xd
iid
∼ N(0, 1), and µ ∈ Rd and Σ a d × d non-negative symmetric

matrix (i.e. Σ = ΣT and xTΣx > 0,∀x ∈ Rd), how can one generate X ∼ Nd(µ,Σ)
(i.e. from a multivariate normal distribution)? Prove that your method works.

(d) Let X1, . . . ,Xn be a random sample from N(µ, σ2). Consider the following Bayesian
model:

f(µ, σ2) =
1

σ2
; (Xi|µ, σ)

iid
∼ N(µ, σ2), i = 1, . . . , n.

Notice that the prior for (µ, σ2) is improper. Find an improper posterior PDF for
this model. Provide the Gibbs sampler to sample from the posterior distribution
by finding the suitable conditional PDFs. [Hint: Remember that the PDF of
Gamma(α, β) is proportional to yα−1e−βy.]
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(a) Let f(x) be a density function on R, and h : R → R such that
∫

R
h(x)2f(x)dx < ∞.

Apply the central limit theorem in order to find the (1−α)% confidence interval for
the classical Monte Carlo estimator of the integral

∫

R
h(x)f(x)dx when the sample

size is sufficiently large.

(b) Consider N samples produced by the accept-reject method on (f, g), where f, g are
densities on R

d and f 6 Mg. Suppose that out of these samples, (Z1, . . . , Zn),
0 < n < N , are the rejected subsamples. Show that

1

n

n∑

i=1

h(Zi)
(M − 1)f(Zi)

Mg(Zi)− f(Zi)

is an unbiased estimator of Ef [h(x)], where h : Rd → R.

(c) We apply the accept-reject method for generating from the positive half of a standard

normal distribution (f(x) = 2√
2π
e−

x
2

2 , x > 0) using an exponential distribution

(with improper density g(x) = e−x). Show that with the right choice of M , on
average, more than 75% of trials are accepted. [You do not need to prove your
assertion about the average probability of acceptance.] [

√
π
2e ≈ 0.76.]

(d) We want to estimate l = P (SR 6 x), where SR =
∑R

i=1 Xi, R is a random variable

with a given distribution (which is easy to sample from), and Xi
i.i.d
∼ F (which is

also easy to sample from), and Xi are independent of R. Observe that for a fixed
R = r,

F r(x) := P (
r∑

i=1

Xi 6 x) = F (x−
r∑

i=2

Xi).

Use this in order to find a Monte Carlo estimator of l. Explain the steps you take
in order to compute this estimator. [Hint: Use the law of total expectation for l.]
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(a) Define the Metropolis-Hastings algorithm for obtaining samples from a (possibly
improper) density π(x). Define also what it means for a transition kernel density
K and a probability measure π to be in detailed balance.

(b) Prove that the transition kernel density of the Markov chain generated by Metropolis-
Hastings and π are in detailed balance.

(c) Show that the transition kernel of the Gibbs sampler (for a density π on R
p) is

the composition of p Metropolis-Hastings transition kernels, each of which have
acceptance probability 1.

(d) Let the random vector X = (X1,X2) have the following two-dimensional PDF:

f(x) = c exp(−(x21x
2
2 + x21 + x22 − 8x1 − 8x2)/2),

where c is the normalizing constant. Suppose we wish to estimate E[X1] via
the classical Monte Carlo estimator 1

N

∑N
t=1 Xt,1. We want to sample {Xt} using

random walk Metropolis-Hastings. Which theorem should we use in order to ensure
that the Monte Carlo estimator is consistent? [You do not need to state the
regularity conditions explicitly.] Provide the exact procedure for random walk
Metropolis-Hastings sampling from f assuming you can sample from standard
normal and uniform distributions. [No need to prove anything.] Discuss how
changing the variance of your proposal distribution affects the generated chain.

END OF PAPER

Part III, Paper 208


