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1 Statistics in Medical Practice
Let there be three treatments for a condition that are to be tested in a clinical trial:

treatment 0 (the control treatment), treatment 1 and treatment 2.

Let the number of patients allocated to arm i be ni. The jth patient allocated to
arm i has treatment response Yij, which is normally distributed with mean µi and variance
σ2
i . The value of µi is unknown but σ2

i is known. Two null hypotheses are to be tested in
the trial:

H
(1)
0 : δ1 = µ1 − µ0 6 0

H
(2)
0 : δ2 = µ2 − µ0 6 0

(a) Write down the Wald test statistics W1 and W2 for testing H
(1)
0 and H

(2)
0 respectively.

(b) Derive the joint distribution of (W1,W2).

(c) Let H
(i)
0 be rejected if Wi > c, i = 1, 2. Write down the probability of rejecting at

least one of H
(1)
0 or H

(2)
0 in terms of a multidimensional integral of a function you

should specify.

(d) By showing the probability of rejecting at least one null hypothesis is increasing in
both δ1 and δ2 or otherwise, show that the maximum chance of making a type I error
in this trial is when δ1 = δ2 = 0.

(e) Describe either a group-sequential design or a response-adaptive randomised rule. In
your answer you should describe briefly what the relevant procedure is together with
two potential benefits and two drawbacks of using it for this trial.
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2 Statistics in Medical Practice
A population of people at risk of developing a particular kind of cancer are given a

screening test every t years. The test may reveal that they have pre-clinical cancer, which
can be treated before it progresses to clinical cancer.

There are data consisting of the t-yearly screening results, and, if clinical cancer is
detected at times other than screen, the times of these diagnoses. It is proposed to use
a continuous-time Markov model to represent the onset and progression of the cancer in
the absence of treatment. Assume that all cases of this cancer have a pre-clinical phase.

(a) Draw a diagram of the states and allowed transitions in the model, including symbols
for the corresponding transition intensities, and write down the transition intensity
matrix (with as few unknown expressions as possible).

(b) Write down or derive expressions for:

(1) the probability that a patient who has just been screened as cancer-free
develops pre-clinical cancer before their next screen;

(2) the probability that a patient, who has developed pre-clinical cancer at some
time u < t, goes on to develop clinical cancer before their next screen at time
t;

(3) the probability that a patient just screened as cancer-free develops clinical

cancer before their next screen. (It may be assumed that the onset rate of
pre-clinical cancer is different from the progression rate).

Hence write out the transition probability matrix for the Markov model.

(c) The Markov model was fitted to data, giving a maximum likelihood estimate for
the transition intensity from the disease-free to the pre-clinical state of q12 = 0.005.
Given a population of 1000 people, how many of them are expected to get preclinical
cancer over a period of 10 years?

(d) Suppose a portion of the population is known to have a specific genetic risk factor
for this kind of cancer. It is also known that risk of cancer onset changes smoothly
with increasing age for everybody.

• Write down a formula which may be used to extend the model in (c) to relate
a patient’s age and presence of the genetic predictor to their risk of onset,
defining all terms used.

• From such an extended model, suppose we have estimated the rate of pre-
clinical cancer onset for a 50 year old person without the risk factor to be q,
and the hazard ratios for the genetic risk factor and one year of age are α1

and α2 respectively. What is the estimated rate of pre-clinical cancer onset
for a 60 year old with the risk factor?

(e) Under the model in (d), explain why we cannot obtain a closed form for the
transition probability matrix P (t1, t2) between a pair of times t1, t2. Given data from
one patient consisting of observed states at a discrete set of times {ti : i = 1, 2, . . .},
what approximation to the covariate values might we use to construct a closed form
likelihood for this model?
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(f) Assume now that a proportion of people with harmless tumours are expected to
be wrongly diagnosed with pre-clinical cancer, but otherwise the screening test is
accurate. Given data from one patient consisting of two negative screens at years
0 and 2 and a positive screen at year 4, obtain the likelihood in as simple a form
as possible, as a function of specific parameters, defining any new parameters. No
covariates need to be included.
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3 Statistics in Medical Practice
Assume we have a closed population of size N + 1 (i.e. with no births, deaths,

immigration or emigration in the time period we are considering), for example the
population of a boarding school. Suppose at time 0, one of the N + 1 students is infected
with measles. Once infected, assume an individual is infectious for a mean period of γ−1

days before becoming immune, and hence recovered and “removed” from the susceptible
population. Assume also that students in the school are homogeneously mixing.

(a) Draw a state diagram describing the dynamics of measles as described above, using
and defining standard notation for the states and transition rates.

(b) Write down a deterministic system of equations describing this compartmental
model, including also any initial conditions and the support of any transition rates.

(c) From the system of equations and the initial conditions, derive expressions, in
terms of N and the number of recovered students at time t, for: (i) the number
of susceptible students; (ii) the number of infectious students.

(d) Show that the threshold result N > γ/β holds if the epidemic takes off, where β is
the effective contact rate and γ is the recovery rate.

Assume now a chain-binomial discrete-time stochastic representation of the above
system, where the system is specified as

S(t+ δt) = S(t)−B(t)

I(t+ δt) = I(t) +B(t)− C(t)

R(t+ δt) = R(t) +C(t)

where B(t) and C(t) are assumed to be independent Binomial random variables represent-
ing the numbers of new infections and new recoveries respectively occurring in [t, t+ δt):

B(t) ∼ Bin(S(t), βI(t)δt)

C(t) ∼ Bin(I(t), 1 − exp(−γδt))

where the time units δt = 1 day are such that 1− exp(−βI(t)δt) ≈ βI(t)δt.

(e) Show that the probability of extinction at time t = 1 can be expressed as

(1− β)N (1− exp(−γ)).

Alternatively, the epidemic could be formulated to be in continuous-time and
stochastic. To simulate the epidemic requires the use of the Gillespie algorithm.

(f) Write down the system of stochastic equations and initial conditions.

(g) What is the distribution for the time until the first event (i.e. the first change of
state)?

(h) What is the probability that this first event leads to extinction of the epidemic?

Part III, Paper 207 [TURN OVER



6

(i) Show that, for N > 2, the probability that there is more than one event in the first
interval [0, 1) is

βN

β∗

(

1− e−β∗

)

−
βNe−β∗

β∗ − 2β

(

1− e−(β∗
−2β)

)

where β∗ = βN + γ.

4 Analysis of Survival Data
Outline how to construct the Kaplan-Meier estimator of the survivor function F (t)

in terms of rj, the number of individuals at risk at time aj, and dj , the number of
individuals with an event at that time, for a suitable set of times aj .

A time-to-event dataset comprises seven individuals. Six of the seven individuals
have event times given by t1, . . . tj, . . . t6 with tj < tj+1. The seventh individual is censored
at time c7 where t3 < c7 < t4.

(a) Calculate the Kaplan-Meier estimate of F (t5) (call this estimate F̂ ∗

5 ).

Given that an individual’s event time is > t4, what are the estimated conditional
probabilities p̂∗4, p̂

∗

5 and p̂∗6 of the individual having an event at t4, t5 and t6 respec-
tively?

(b) Assume that the seventh individual’s event time is now known to be equal to the
fourth actually observed event time (that is: c7 = t4). Calculate the Kaplan-Meier
estimate of F (t5) under this assumption (call this estimate F̂ 0

5 ).

Calculate, also under this assumption, the estimated conditional probabilities p̂04, p̂
0
5

and p̂06 of an individual having an event at t4, t5 and t6 respectively, conditional on
the event time being > t4.

(c) Re-calculate the Kaplan-Meier estimate of F (t5), now splitting the seventh individ-
ual’s event over times t4, t5, t6 in the proportions p̂04, p̂

0
5, p̂

0
6 (call this estimate F̂ 1

5 ).
Hint : Justify that the seventh individual’s contribution to dj is p̂0j and to rj is
∑

j′:j′>j p̂
0
j′ for j > 4.

Comment on the numerical values of F̂ 0
5 , F̂

1
5 and F̂ ∗

5 .

(d) Show that the estimate of F (t5) obtained by splitting the contribution of the seventh
individual’s event over the times t4, t5, t6 in the proportions p̂∗4, p̂

∗

5, p̂
∗

6 is equal to F̂ ∗

5 ,
and comment.
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5 Analysis of Survival Data
Show that, if T is a time-to-event variable with integrated hazard function H, the

variable U = H(T ) has an exponential(1) distribution. (You may assume H has an
inverse.)

(a) A time-to-event dataset {(xi, vi): i = 1, . . . , n} comprises n individuals: xi being
either the time of the observed event (vi = 1) or the time of censoring (vi = 0)
for the ith individual. Let H(t) be the common integrated hazard and Ĥ(t) be an
estimated integrated hazard obtained from a model. What would you expect the
Kaplan-Meier plot (with log-transformed vertical axis) of the time-to-event dataset
{(Ĥ(xi), vi): i = 1, . . . , n} to look like, assuming the model is a good fit to the data?

(b) Let Y = min(H(T ),H(C)) where C is a time-to-censoring variable. What is known
about the expectation of Y ? How would you modify the definition of Y to give a
variable with known expectation?

Describe how the modified Y can be used to explore the contribution of explanatory
variables to a time-to-event model.
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6 Analysis of Survival Data

(a) Define the survivor function of a continuous time-to-event variable. How is the
density function related to the survivor function ?

What is meant by a hazard function? Write down an expression for the hazard
function in terms of the density and the survivor functions.

What condition is imposed on the density if the event is certain to happen at some
time (in the absence of censoring). What, in that case, is the limit of the integral
from 0 to t of the hazard function as t → ∞?

(b) A time-to-death study enters individuals at a uniform rate between calendar times
τa and τb. The study closes at calendar time τc (τa < τb < τc) when all individuals
who have not died are censored. There is no other source of censoring. State, with
justification, whether or not this is an example of informative censoring.

Let the time-to-death (from study entry) variable be T and the time-to-censoring
(from study entry) variable be C.

(i) Obtain the density, survivor, hazard and integrated hazard functions for C
in terms of t, the time since the individual’s entry into the study. Interpret
the behaviour of the hazard and integrated hazards near t = τc − τa.

(ii) Obtain an expression for the probability of an individual either dying or being
censored by time t since study entry (0 6 t < τc − τa) in terms of τa, τb, τc
and the survivor function for T .
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7 Analysis of Survival Data
The ith individual of a population of n individuals is subject to a continuous time-

to-event process with density fi(t) and hazard hi(t).

(a) Show that the population density f̄(t) is the mean of the individual densities. Why,
in general, cannot the population hazard h̄(t) be the mean of the individual hazards?
Obtain an expression for the population hazard as a weighted mean of the individual
hazards.

(b) Estimation of integrated hazard is often based on the equation

E{dNi(t)|Ht−} = Yi(t)hi(t) dt

where Ni(t) (∈{0, 1}) is the indicator for the ith individual having an observed event
before or at t, Yi(t) is the indicator for the ith individual being at risk at t and the
expectation is conditional on the history Ht− up to but not including t.

(i) Interpret this equation. What is meant by the ‘history’ in this context?

(ii) In the absence of censoring, what is EYi(t) (unconditionally)?

(iii) If the time-to-censoring variable has common survivor function G(t), and is
independent of the time-to-event variable, what is EYi(t) (unconditionally)?

(iv) What then is the unconditional expectation of dNi(t)?

(c) Suppose the n individuals are subject to a common integrated hazard: Hi(t) =
H0(t). Derive ĤNA(t), the Nelson-Aalen estimator of H0(t). (Keep your answer in
the form of an integral.)

(d) Suppose now that the Hi(t) did depend on i but all individuals are subject to an
independent time-to-censoring process with common survivor function G(t). Give
an informal derivation of the unconditional expectation of ĤNA(t) in terms of the
Hi(t). (You may use the approximation EU/EV for E{U/V }.)

Comment on the dependence of your answer on G(t). Is ĤNA(t) an unbiased
estimator of the population integrated hazard H̄(t)?

END OF PAPER
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