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A physician is studying the speed of growth of a tumour. Data are collected by
measuring the size of tumours (size, in mm) after they have been allowed to grow in a
laboratory growth medium for a certain number of days (days). Data are collected in
three different laboratories and this is denoted in R with a factor lab with levels A,B and
C.

(a) The physician decides to fit a linear model to the data:

> tumour1<-lm(size~days+days:lab)

> summary(tumour1)

##

## Call:

## lm(formula = size ~ days + days:lab)

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.6464 5.3745 0.120 0.905

## days 10.1404 0.3677 27.576 < 2e-16 ***

## days:labB 5.0770 0.3739 13.580 2.58e-13 ***

## days:labC -3.1296 0.3739 -8.371 7.48e-09 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 15.09 on 26 degrees of freedom

## Multiple R-squared: 0.9858, Adjusted R-squared: 0.9842

## F-statistic: 601.5 on 3 and 26 DF, p-value: < 2.2e-16

Write down the algebraic form of the model. What is the estimated daily increase
in size for laboratory A, B and C? What is the estimate of the error variance?

(b) Check the diagnostic plots in Figure 1 and define the quantities that appear on the x
and y axes of these plots. Do you spot any problems with the model assumptions?

(c) Write down the expression of a (1 − α)-level prediction interval for the size of a
tumour after 10 days of growth in the laboratory B. Show that the probability of
new observations lying within the interval is (1− α).

(d) The physician tries then to fit a second model which allows for different intercepts for
the different laboratories:

> tumour2<-lm(size~days*lab)

> anova(tumour1,tumour2)

## Analysis of Variance Table

##
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## Model 1: size ~ days + days:lab

## Model 2: size ~ days * lab

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 26 5921.7

## 2 24 5103.0 2 818.72 1.9253 0.1677

Explain the test that is carried out by the anova command, specifying the null and
the alternative hypothesis, the expression of the test statistics and how the p-value
is computed. Which model is preferable?

Figure 1: Diagnostics plots.

(e) A colleague of the physician suggests the following analysis.

> library(lme4)

> tumour3<-lmer(size~1+(0+days|lab))

> summary(tumour3)

## Linear mixed model fit by REML [’lmerMod’]

## Formula: size ~ days + (0 + days | lab)

##

## REML criterion at convergence: 253.7

##

## Random effects:

## Groups Name Variance Std.Dev.

## lab days 17.08 4.133

## Residual 227.76 15.092

## Number of obs: 30, groups: lab, 3

##

## Fixed effects:

## Estimate Std. Error t value

## (Intercept) 0.6464 5.3745 0.120

## days 10.7895 2.4048 4.487

##
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What is the difference with respect to model tumour1? Is this appropriate for the
problem at hand? What is the estimated daily increase in size when averaged across
the laboratories?

(f) The physician is considering the possibility of errors being correlated for the obser-
vations taken in the same laboratory on different days. Assuming that the error
correlation decreases exponentially with the time interval between the two obser-
vations, propose a modification to the model tumour3 to address this problem and
give the R commands to fit this new model.
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Let us consider the model
Y = Xβ + ǫ,

where Y = (Y1, . . . , Yn)
T (T denotes transpose), X is a known n × p matrix (p < n), β

a vector of unknown parameters and ǫ ∼ N(0, σ2In), In being the n × n identity matrix
and XTX assumed to be invertible.

(a) Derive the maximum likelihood estimators β̂ and σ̂2 for β and σ2 respectively and
write down the distribution of β̂.

(b) Define the fitted values Ŷ and derive the expression of the hat matrix H such that
Ŷ = HY. What is the covariance matrix of Ŷ? Show that H is a projection matrix
and that the residuals vector ǫ̂ = Y − Ŷ and β̂ are uncorrelated. Show that σ̂2 is
biased and propose an alternative unbiased estimator for σ2.

(c) In the (edited) R output below, energy is the yearly production of energy from
photovoltaic systems, sunny is the number of sunny days in the year and latitude

is the latitude of the systems location.

> photo1<-lm(energy~sunny*latitude)

> summary(photo1)

##

## Call:

## lm(formula = energy ~ sunny * latitude)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.65879 -0.18912 0.01026 0.16919 0.74891

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.619e+00 2.476e-01 6.538 3.01e-09 ***

## sunny 1.403e-02 2.269e-03 6.183 1.53e-08 ***

## latitude 1.438e-02 5.092e-03 2.823 0.00578 **

## sunny:latitude -4.872e-06 4.726e-05 -0.103 0.91811

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.2836 on 96 degrees of freedom

## Multiple R-squared: 0.7515, Adjusted R-squared: 0.7437

## F-statistic: 96.78 on 3 and 96 DF, p-value: < 2.2e-16

Write down the algebraic form of the fitted model and the estimates of the
parameters. What can you suggest to improve the model?

(d) Discuss the output that can be found in Figure 1, obtained with the following R code:
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> library(MASS)

> boxcox(photo1)

Figure 1: Output of the boxcox function.

Which transformation of the data is suggested?

(e) Which model checks would you need to carry out to support the inference based on
the chosen model?

(f) Assume now that ǫ ∼ N(0,Σ) for some known covariance matrix Σ. Derive the
maximum likelihood estimator β̂ for β. What is the expression of the covariance
matrix of β̂?
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A group of biologists are investigating the biodiversity in different island environ-
ments. They collected data from 30 islands, measuring the number of species (nspecies),
the average altitude of the island (altitude, in meters) and the maximum yearly temper-
ature (temperature, in degree Celsius).

(a) The biologists fit three different models and the edited R output can be found below.

> species1<-glm(nspecies~altitude*temperature,family=poisson)

> summary(species1)

##

## Call:

## glm(formula = nspecies ~ altitude * temperature, family = poisson)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 2.7689520 0.7369307 3.757 0.000172

## altitude 0.0428051 0.0372897 1.148 0.251008

## temperature 0.0163103 0.0247408 0.659 0.509736

## altitude:temperature -0.0008147 0.0012722 -0.640 0.521927

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 101.163 on 29 degrees of freedom

## Residual deviance: 82.916 on 26 degrees of freedom

## AIC: 253.65

> 1-pchisq(82.916,26)

## [1] 7.394536e-08

> species2<-glm(nspecies~altitude+temperature,family=poisson)

> summary(species2)

##

## Call:

## glm(formula = nspecies ~ altitude + temperature, family = poisson)

##

## Coefficients:
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## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 3.211783 0.255187 12.586 < 2e-16

## altitude 0.019091 0.004530 4.214 2.51e-05

## temperature 0.001145 0.007219 0.159 0.874

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 101.163 on 29 degrees of freedom

## Residual deviance: 83.326 on 27 degrees of freedom

## AIC: 252.06

>1-pchisq(83.326,27)

## [1] 1.171784e-07

> species3<-glm(nspecies~altitude,family=poisson)

> summary(species3)

##

## Call:

## glm(formula = nspecies ~ altitude, family = poisson)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 3.24926 0.09578 33.923 < 2e-16

## altitude 0.01898 0.00447 4.245 2.18e-05

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 101.163 on 29 degrees of freedom

## Residual deviance: 83.351 on 28 degrees of freedom

## AIC: 250.08

>1-pchisq(83.351,28)

2.0935e-07

Explain why the biologists decided to fit the model species2 and the model
species3. Write down the algebraic form of the final model.

(b) Derive the expression of the deviance of the final model. Is the model a good fit for
the data? Why or why not?

(c) Consider now the following R output

> phi=(1/(28)*sum((nspecies-species3$fitted.values)^2/(species3$fitted.values)))

> phi

## [1] 3.099079

> species_new<-glm(nspecies~altitude,family=quasipoisson)
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Describe why there is the need to fit this new model and write down the estimated
relationship between the average number of species and altitude. Provide a 95%
approximate confidence interval for the coefficient associated with altitude (recall
that the 0.975 quantile of a standard normal distribution is Z0.025 = 1.96). Does
this suggest dropping altitude from the model?

Figure 1: Diagnostics plots.

(d) Write the R code that would be needed to fit a negative binomial model for the
number of species with altitude as predictor. Explain why this is not a generalized
linear model.

(e) Looking at the diagnostics plots in Figure 1, is it a good idea to fit the following
model? Why?

> library(mgcv)

> species_gam<-gam(nspecies~s(altitude,bs="cr"),family=quasipoisson)

> plot(species_gam)

Considering the plot of the estimated regression function in Figure 2, why is this
better than including a quadratic term in the model?
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Figure 2: Estimated regression function.
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(a) Let Y be a Bernoulli random variable, with P [Y = 1] = p and P [Y = 0] = 1−p. Show
that Y belongs to an exponential dispersion family. Identify the natural parameter
and the dispersion parameter. Use the results about the mean and variance of the
exponential dispersion family to compute E[Y ] and V ar(Y ).

(b) A health agency is investigating the probability of success of a type of surgery. The
dataset imported in R contains the outcome of the surgery (surg is 1 if successful, 0
else), the age of the patient (age) and a measure of the frailty of the patient (frail,
this is a factor coded 0 or 1 and it is assessed by clinicians before the surgery).

Consider the following (edited) R output.

> surgery_model<-glm(surg~age+frail,family=binomial,

weights = rep(1,length(surg)))

> summary(surgery_model)

##

## Call:

## glm(formula = surg ~ age + frail, family = binomial, weights = rep(1,

## length(surg)))

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 4.25375 2.08083 2.044 0.04093 *

## age -0.08942 0.03635 -2.460 0.01390 *

## frail -3.15336 1.08296 -2.912 0.00359 **

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 84.542 on 99 degrees of freedom

## Residual deviance: 61.376 on 97 degrees of freedom

## AIC: 67.376

##

Write down the algebraic form of the model and the estimates of the parameters.
Infer from the output how many patients are included in the dataset. State the
definition of the Aikake Information Criterion and, from that, derive the expression
of its estimator for this specific model.

(c) Consider the output of the following anova command.

> anova(surgery_model,test="Chisq")

## Analysis of Deviance Table
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##

## Model: binomial, link: logit

##

## Response: surg

##

## Terms added sequentially (first to last)

##

##

## Df Deviance Resid. Df Resid. Dev Pr(>Chi)

## NULL 99 84.542

## age 1 6.5187 98 78.023 0.01067 *

## frail 1 16.6474 97 61.376 4.501e-05 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Assuming that there is no problem with the diagnostics plots, what can you conclude
about which variables affect the probability of success of the surgery?

(d) A second model is fitted with the commands

> library(mgcv)

> surgery_model2<-gam(surg~s(age,bs="cr")+frail,family=binomial,

weights = rep(1,length(surg)))

Write down the algebraic form of this second model. Looking at Figure 1, is this
an improvement with respect to the first model? Why?

Figure 1: Estimated regression function
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Consider the model

Yi = f(Xi) + ǫi, for i = 1, . . . , n,

where ǫ1, . . . , ǫn are independent N(0, σ2) random variables.

(a) Explain how the regression function f can be estimated using local polynomial
regression with first degree polynomials.

(b) Define the penalized minimization problem (with smoothing parameters λ > 0) whose
solution provides the cubic smoothing spline estimator f̂λ. Derive the expression
of the smoothing operator Sλ such that Ŷ = SλY, where Ŷi = f̂λ(Xi). What are
viable strategies for the choice of λ?

Data have been collected about wages, years of education and years of working
experience in an European city. These data have been imported in R in the variables
wage, education and experience respectively.

(c) Consider the following R code

> library(gam)

> wage_model1<-gam(wage~ lo(experience,span=1,degree=1)

+ lo(education,span=1,degree=1))

> wage_model2<-gam(wage~ s(experience,spar=0.8)+s(education,spar=1.2))

Write down the algebraic form of the model that has been considered and explain
what is the difference between the fitted models wage_model1 and wage_model2.
Looking at the estimated regression functions in Figure 1, do you see any qualitative
difference between the two fitted models? Can you suggest how to tune the
smoothing parameter to improve the fit, if necessary?

(d) Describe the algorithm used to estimate the regression functions in the model
wage_model2.

(e) Look at the (edited) summary of the fitted model wage_model2:

##

## Call: gam(formula = wage ~ s(experience, spar = 0.8) + s(education,

## spar = 1.2))

## Null Deviance: 55843310 on 99 degrees of freedom

## Residual Deviance: 906437.7 on 87.7644 degrees of freedom

## AIC: 1221.47

##

## Anova for Parametric Effects
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## Df Sum Sq Mean Sq F value Pr(>F)

## s(experience, spar = 0.8) 1.000 45464839 45464839 4402.06 < 2.2e-16 ***

## s(education, spar = 1.2) 1.000 5242047 5242047 507.55 < 2.2e-16 ***

## Residuals 87.764 906438 10328

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Anova for Nonparametric Effects

## Npar Df Npar F Pr(F)

## (Intercept)

## s(experience, spar = 0.8) 8.8 45.447 < 2e-16 ***

## s(education, spar = 1.2) 0.4 6.016 0.03923 *

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

What are the effective degrees of freedom associated to each predictor? And the
total effective degrees of freedom of the model? What is the estimate of the error
variance in this case?
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Figure 1: Estimated regression function.
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A researcher collected data about a manufacturing process for aluminum bars. The
researcher is interested in the relationship between the stirring rate applied in the furnace
and the yield strength of the aluminium bars. Data are collected from three different
furnaces and they are imported in R in the variables strength (yield strength of the bar
in MPa), stir (the stirring rate in the furnace in rotations per minute) and furnace (a
factor coded as A, B and C indicating the furnace the bar comes from).

(a) Consider the following R output:

> library(lme4)

> strength_model<- lmer(strength~ stir+(1|furnace)+(0+stir|furnace))

> summary(strength_model)

## Linear mixed model fit by REML [ lmerMod ]

## Formula: strength ~ stir + (1 | furnace) + (0 + stir | furnace)

## Random effects:

## Groups Name Variance Std.Dev.

## furnace (Intercept) 48.73800 6.9813

## furnace.1 stir 0.01316 0.1147

## Residuals 36.29950 6.0249

## Number of obs: 30, groups: furnace, 3

## ## Fixed effects:

## Estimate Std. Error t value

## (Intercept) 277.6636 4.7690 58.22

## stir 0.5601 0.1102 5.08

Write down the algebraic form of of the model that has been fitted and the estimates
of the parameters and derive the marginal formulation of the model. Comment
on the diagnostics plots in Figure 1, do they show any problems with the model
assumptions?

(b) Derive an expression for the estimator of the conditional modes of the random effects.
[You may use without proof any results you require about the multivariate normal
distribution.]

(c) The researcher then considers a second model. Below you can find the R commands
and an edited output.

> strength_model2<- lmer(strength~ 1+(1|furnace)+(0+stir|furnace))

> anova(strength_model2,strength_model)
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Figure 1: Diagnostics plots.

## refitting model(s) with ML (instead of REML)

## Models:

## strength_model2: strength ~ 1 + (1 | furnace) + (0 + stir |furnace)

## strength_model: strength ~ stir + (1 | furnace) + (0 + stir | furnace)

## Df AIC Chisq Chi Df Pr(>Chisq)

## strength_model2 4 216.18

## strength_model 5 210.22 7.9588 1 0.004786

Describe the restricted maximum likelihood procedure for parameters estimation
and explain why it is necessary to refit the models using maximum likelihood. Can
the researcher drop the fixed effect associated with the stirring rate from the model?

(d) The researcher also considers a third model

> strength_model3<- lmer(strength~ stir+(1|furnace))

> anova(strength_model3,strength_model)

Explain why the output of the anova command cannot be trusted in this case
and suggest an alternative method to compare the models strength_model3 and
strength_model1.

(e) The researcher is worried that a linear function is not appropriate to describe the
relationship between stirring rate and yield strength and decides to fit the fixed
effects nonparametrically.

> library(mgcv)

> strength_model4<-gamm(strength~s(stir,bs="cr"),random=list(furnace=~1))

> plot(strength_model4$gam)
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Figure 2: Estimated regression function.

Looking at Figure 2, is the nonparametric approach needed? Considering the
following output, which model should the researcher choose?

> AIC(strength_model,strength_model3,strength_model4$lme)

## df AIC

## strength_model 5 208.3243

## strength_model3 4 206.6408

## strength_model4$lme 5 210.3425

END OF PAPER
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