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1 In answering the following questions, you need not explain what a graph is nor
define any graph terminology such as d-separation. Let G be a directed acyclic graph
(DAG) with vertex set {1, . . . , p}, and let Z ∈ R

p be a random vector with distribution P .
What does it mean for P to satisfy the global Markov property with respect to G? What
does it mean for P to satisfy causal minimality with respect to G? What does it mean for
P to be faithful to G?

Give, with brief justification, an example of a distribution P and DAG G where P
satisfies causal minimality with respect to G but where P is not faithful to G.

Suppose that P satisfies the global Markov property with respect to G. For any
A ⊆ {1, . . . , p}, by Ac we mean {1, . . . , p} \ A. The Markov blanket of a node k, denoted
mb(k), is defined to be the set of all nodes adjacent to k together with the parents of all
of its children. Show that if (mb(k) ∪ {k})c 6= ∅ then Zk ⊥⊥ Z(mb(k)∪{k})c |Zmb(k).

Now suppose P is faithful to G. Show then that any set of nodes A ⊆ {1, . . . , p}\{k}
such that Zk ⊥⊥ Z(A∪{k})c |ZA must have A ⊇ mb(k).

2

Let Y ∈ R
n be a vector of responses and let X ∈ R

n×p be a matrix of predictors,
and suppose Y and the columns of X have been centred. Write down the optimisation
problem solved by Ridge regression when the tuning parameter is λ > 0 and show that
the fitted values are given by

X(XTX + λI)−1XTY.

Show that the fitted values also equal

K(K + λI)−1Y

where K = XXT .

Let X be a (non-empty) input space. What is a positive definite kernel? Show that
if k is a positive definite kernel then

k(x, x′)2 6 k(x, x)k(x′, x′)

for all x, x′ ∈ X .

Prove that for every positive definite kernel k there exists an inner product space
H and feature map φ : X → H with

k(x, x′) = 〈φ(x), φ(x′)〉

for all x, x′ ∈ X .
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Let Y ∈ R
n be a vector of responses and X ∈ R

n×p a matrix of predictors. Suppose
that the columns of X have been centred and scaled to have ℓ2-norm

√
n, and that Y is

also centred. Consider the linear model (after centring),

Y = Xβ0 + ε− ε̄1,

where 1 is an n-vector of 1’s and ε̄ = 1T ε/n. Define the Lasso estimator β̂L
λ of β0 with

regularisation parameter λ > 0.

Write down the KKT conditions for the Lasso and show that

1

n
‖X(β0 − β̂L

λ )‖22 6
1

n
εTX(β̂L

λ − β0) + λ‖β0‖1 − λ‖β̂L
λ ‖1.

Let S = {k ∈ {1, . . . , p} : β0
k 6= 0}, let N = {1, . . . , p} \ S, and let s = |S|. Suppose

0 < s < p. For an arbitrary A ⊆ {1, . . . , p} and b ∈ R
p, write bA for the vector in R

|A|

obtained by extracting the components of b with indices that are in A. Assume that for
some c ∈ (0, 1) there exists φ > 0 such that for all b ∈ R

p with (1−c)‖bN‖1 6 (1+c)‖bS‖1,
we have

‖bS‖21 6
s‖Xb‖22
nφ2

.

Define the event Ω = {‖XT ε‖∞/n 6 cλ}. Show that if ε ∼ Nn(0, σ
2I) and λ =

Aσ
√

log(p)/n with A > 0, then P(Ω) > 1 − p−(A2c2/2−1). [You may assume a tail bound
for a standard normal random variable provided you state it clearly.]

Show that on Ω,

1

n
‖X(β̂L

λ − β0)‖22 + (1− c)λ‖β̂L
λ,N‖1 6 (1 + c)2λ2 s

φ2
.

Finally show that on Ω, if |β0
k | > (1 + c)λs/φ2 then sgn(β̂L

λ,k) = sgn(β0
k).

Part III, Paper 205 [TURN OVER



4

4

Suppose x1, . . . , xn are independent random vectors with each xi ∼ Np(µ,Σ
0). Write

X ∈ R
n×p for the matrix with ith row xi and suppose that X has full column rank. Show

that the maximum likelihood estimator for Ω0 = (Σ0)−1 minimises

− log det(Ω) + tr(SΩ)

over Ω ≻ 0 (i.e. positive definite Ω) where

S =
1

n

n
∑

i=1

(xi − X̄)(xi − X̄)T , X̄ =
1

n

n
∑

i=1

xi.

Give the optimisation problem solved by the graphical Lasso estimator Ω̂λ of the
precision matrix with tuning parameter λ > 0, and write down its KKT conditions.

For any matrix M ∈ R
p×p and j ∈ {1, . . . , p}, let M−j,−j ∈ R

(p−1)×(p−1) be the
submatrix of M excluding its jth row and column, and let M−j,j ∈ R

p−1 be the jth
column of M excluding its jth component. Fix j ∈ {1, . . . , p} and λ > 0. Write Σ̂ = Ω̂−1

λ

and let W be a symmetric positive definite matrix with W 2 = Σ̂−j,−j. Let b∗ be a
minimiser over b ∈ R

p−1 of

1

2
‖Wb−W−1S−j,j‖22 + λ‖b‖1.

Explain very briefly why b∗ is unique. By comparing the KKT conditions of the
optimisation problem above to those for the graphical Lasso, show that

Σ̂−j,j = Σ̂−j,−jb
∗.

[You may use the fact that if M ∈ R
p×p is a symmetric positive definite matrix and

M =

(

P Q
QT R

)

with P and R square matrices, then writing T = P −QR−1QT , we have that T is positive
definite and

M−1 =

(

T−1 −T−1QR−1

−R−1QTT−1 R−1 +R−1QTT−1QR−1

)

.]
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