MATHEMATICAL TRIPOS Part III

Thursday, 2 June, 2016 $-9{:}00~\mathrm{am}$ to 11:00 am

PAPER 204

PERCOLATION AND RELATED TOPICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

 $\mathbf{1}$

(a) Explain what is meant by the *bond percolation model* on an undirected graph G = (V, E).

(b) Define an *increasing event*. State the FKG inequality in this setting, and also the BK disjoint-occurrence inequality for a pair of increasing events, being careful to define any terms used.

(c) Let G be the square lattice, and let $\Lambda_n = [-n, n]^2$ and $\partial \Lambda_n = \Lambda_n \setminus \Lambda_{n-1}$. Show that $g_k := P_p(0 \leftrightarrow \partial \Lambda_k)$ satisfies

$$g_{m+n} \leq |\partial \Lambda_m| g_m g_n, \qquad m, n \geq 0.$$

Deduce that the limit $\gamma = \lim_{n \to \infty} g_n^{1/n}$ exists and satisfies $p \leq \gamma \leq 1$. (Any standard results which you use should be stated clearly.)

(d) Let
$$h_k = P_p(0 \leftrightarrow e_k)$$
 where $e_k = (k, 0)$. Show that

$$\left(\frac{g_k}{8k}\right)^2 \leqslant h_{2k} \leqslant g_{2k}, \qquad k \geqslant 1,$$

and deduce that $\lim_{n\to\infty} h_n^{1/n} = \gamma$. (The cases of even/odd n may be treated separately.)

 $\mathbf{2}$

(a) Define an *n*-step self-avoiding walk (SAW) on a graph G.

(b) Let σ_n be the number of *n*-step SAWs on the doubly-infinite ladder graph (illustrated below) that start at 0 and at each step move either vertically or to the right. Show that $\sigma_n^{1/n} \to \gamma$, where $\gamma = \frac{1}{2}(1 + \sqrt{5})$ is the golden mean.

(c) Consider bond percolation on the square lattice \mathbb{L}^2 with parameter p. Show that the critical probability p_c satisfies $p_c \leq 1 - \mu^{-1}$, where μ is the connective constant of \mathbb{L}^2 .

(d) Let κ_n be the (random) number of *n*-step SAWs of \mathbb{L}^2 starting at 0 that use open edges only. Show that $\limsup_{n\to\infty} E_p(\kappa_n^{1/n}) \leq p\mu$, where E_p denotes expectation.

(You may use Lyapunov's inequality, namely, $\{E(|Z^r|\}^{1/r} \text{ is non-decreasing in } r = 0, 1, 2 \dots)$

UNIVERSITY OF

3

(a) Define the *percolation probability* $\theta(p)$ of the site percolation model on the *d*-dimensional cubic lattice $\mathbb{L}^d = (V, E)$ with parameter *p*.

(b) Show that the function θ is right continuous in that $\lim_{p' \downarrow p} \theta(p') = \theta(p)$.

(c) Explain how to construct a sequence of processes $X_p = (X_p(v) : v \in V)$, for $p \in [0, 1]$, satisfying: (i) $X_r \leq X_s$ for $r \leq s$, and (ii) for $p \in [0, 1]$, X_p is a site model with parameter p, as in part (a).

(d) Let I_p be the event that X_p contains an infinite open path starting at the origin. Show that

$$\lim_{p'\uparrow p}\theta(p')=\theta(p)-\mathbb{P}(I_p\cap\{M=p\}),$$

where $M = \inf\{p : I_p \text{ occurs}\}$ and \mathbb{P} is the appropriate probability measure.

(e) Deduce that the function θ is *continuous* on the half-open interval $(p_c, 1]$. (Any general result may be used without proof, but should be stated carefully.)

$\mathbf{4}$

Consider bond percolation on the square lattice \mathbb{L}^2 with parameter p, and rotate \mathbb{L}^2 through the angle $\pi/4$ as illustrated in the figure below (which contains both \mathbb{L}^2 and its dual). Let $\theta(p)$ denote the percolation probability.

(a) Let $R_{m,n}$ be a rectangle of \mathbb{L}^2 containing m vertices on each horizontal side, and n on each vertical side (two rectangles of shape $R_{3,3}$ form a rectangle of shape $R_{6,3}$, as indicated in the figure). Let $C_{m,n}$ be the event that $R_{m,n}$ is crossed from left to right by an open path. By considering reflection in the line L or otherwise, show that there exists $\tau > 0$ such that $P_{\frac{1}{5}}(C_{3m,m}) > \tau$ for all $m \ge 1$.

(b) Deduce that there exist constants $A < \infty$ and $\beta > 0$ such that $\theta(p) \leq A(p - \frac{1}{2})^{\beta}$ for $p > \frac{1}{2}$.

4

END OF PAPER

Part III, Paper 204