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(a) Let φ : D → D′ be a conformal isomorphism of planar domains and assume
that D is bounded. Fix z ∈ D and set z′ = φ(z). Let (Bt)t>0 and (B′

t)t>0 be complex
Brownian motions starting from z and z′ respectively. Set

T = inf{t > 0 : Bt 6∈ D}, T ′ = inf{t > 0 : B′

t 6∈ D′}.

Show that, for a suitable random homeomorphism τ : [0, T ) → [0, T̃ ) and for B̃t = φ(Bτ(t)),

the random processes (T̃ , (B̃t)t<T̃
) and (T ′, (B′

t)t<T ′) have the same distribution.

(b) Deduce that the random time T ′ is almost surely finite.

(c) Does there exist a conformal isomorphism φ : D → C\{0}? Justify your answer.

(d) Define the Green function GD for D and show that, for all w ∈ D with w 6= z
and for w′ = φ(w), we have

GD′(z′, w′) = GD(z, w).
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Let K be a compact H-hull and set H = H \K. Assume that K is contained in the
closed unit ball D̄.

(a) What does it mean to say that gK is the mapping-out function for K?

(b) Let y ∈ (1,∞) and let B be a complex Brownian motion starting from iy. Set

T = inf{t > 0 : Bt 6∈ H}.

Let x, b ∈ (1,∞) with x < b. Show that, in the limit y → ∞, we have

πyPiy(BT ∈ (x, b)) → gK(b)− gK(x).

You may assume standard properties of the mapping-out function provided these are
clearly stated.

(c) Show that gK(x) ∈ [x, x+ 1/x] for all x ∈ (1,∞).

(d) Show that |gK(z) − z| 6 3 for all z ∈ H.

(e) Give an example to show that the constant 3 cannot be improved. A detailed
justification of this is not required.
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(a) Let γ = (γt)t>0 be a continuous random process in the closed upper half-plane
H̄ with γ0 = 0. What does it mean to say that γ is a Schramm–Loewner evolution of
parameter κ ∈ [0,∞)?

(b) Let γ be an SLE(κ) and let b ∈ (0,∞). Show how the event that γ hits the
interval [b,∞) ⊆ R may be characterized in terms of the Loewner flow on R.

(c) Show that, for some κc ∈ (0,∞), to be determined, we have

P(γ hits [b,∞)) =

{

0, for κ < κc,

1, for κ > κc.

(d) Hence show that, if κ < κc then almost surely γ hits no point in (0,∞), while
if κ > κc then almost surely γ hits an unbounded set of points in (0,∞).

(e) What happens when κ = κc?

You may use without proof any general fact from the deterministic Loewner theory,
provided that you state it clearly.
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(a) Let φ be a conformal automorphism of H such that φ(0) = 0 and which extends
to a homeomorphism of initial domains H∪(−1,∞) → H∪(∞, 1). Find an explicit formula
for φ.

(b) Let γ be an SLE(6) in (H, 0,∞) and set γ̃t = φ(γt). Show that γ̃ is an SLE(6)
in (H, 0, 1) of scale σ(w) = w/(1 − w).

(c) Write Kt and K̃t for the compact H-hulls generated by γ(0, t] and γ̃(0, t]
respectively, and write gt and g̃t for their mapping out functions. Set

T = inf{t > 0 : γt ∈ (−∞,−1]}

and, for t < T , consider the conformal automorphism of H given by

φt = g̃t ◦ φ ◦ g−1
t .

You may assume that the family of compact H-hulls (K̃t)t<T has the local growth property
and has Loewner transform (ξ̃t)t<T given by ξ̃t = φt(ξt). You may also assume that

hcap(K̃t) = 2

∫ t

0
φ′

s(ξs)
2ds.

Compute the time derivative φ̇t(z) for z ∈ H and hence deduce that

φ̇t(ξt) = −3φ′′

t (ξt).

(d) Show that γ̃ is also a time-change of an SLE(6) in (H, 0,∞) up to time T .
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