MATHEMATICAL TRIPOS Part III

Monday, 6 June, 2016 $-9{:}00~\mathrm{am}$ to 11:00 am

PAPER 203

SCHRAMM-LOEWNER EVOLUTIONS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

(a) Let $\phi : D \to D'$ be a conformal isomorphism of planar domains and assume that D is bounded. Fix $z \in D$ and set $z' = \phi(z)$. Let $(B_t)_{t \ge 0}$ and $(B'_t)_{t \ge 0}$ be complex Brownian motions starting from z and z' respectively. Set

 $T = \inf\{t \ge 0 : B_t \notin D\}, \quad T' = \inf\{t \ge 0 : B'_t \notin D'\}.$

Show that, for a suitable random homeomorphism $\tau : [0,T) \to [0,\tilde{T})$ and for $\tilde{B}_t = \phi(B_{\tau(t)})$, the random processes $(\tilde{T}, (\tilde{B}_t)_{t < \tilde{T}})$ and $(T', (B'_t)_{t < T'})$ have the same distribution.

(b) Deduce that the random time T' is almost surely finite.

(c) Does there exist a conformal isomorphism $\phi: D \to \mathbb{C} \setminus \{0\}$? Justify your answer.

(d) Define the Green function G_D for D and show that, for all $w \in D$ with $w \neq z$ and for $w' = \phi(w)$, we have

$$G_{D'}(z',w') = G_D(z,w).$$

$\mathbf{2}$

Let K be a compact \mathbb{H} -hull and set $H = \mathbb{H} \setminus K$. Assume that K is contained in the closed unit ball $\overline{\mathbb{D}}$.

(a) What does it mean to say that g_K is the mapping-out function for K?

(b) Let $y \in (1, \infty)$ and let B be a complex Brownian motion starting from iy. Set

$$T = \inf\{t \ge 0 : B_t \notin H\}.$$

Let $x, b \in (1, \infty)$ with x < b. Show that, in the limit $y \to \infty$, we have

$$\pi y \mathbb{P}_{iy}(B_T \in (x, b)) \to g_K(b) - g_K(x).$$

You may assume standard properties of the mapping-out function provided these are clearly stated.

- (c) Show that $g_K(x) \in [x, x + 1/x]$ for all $x \in (1, \infty)$.
- (d) Show that $|g_K(z) z| \leq 3$ for all $z \in H$.

(e) Give an example to show that the constant 3 cannot be improved. A detailed justification of this is not required.

UNIVERSITY OF

3

(a) Let $\gamma = (\gamma_t)_{t \ge 0}$ be a continuous random process in the closed upper half-plane $\overline{\mathbb{H}}$ with $\gamma_0 = 0$. What does it mean to say that γ is a Schramm–Loewner evolution of parameter $\kappa \in [0, \infty)$?

3

(b) Let γ be an SLE(κ) and let $b \in (0, \infty)$. Show how the event that γ hits the interval $[b, \infty) \subseteq \mathbb{R}$ may be characterized in terms of the Loewner flow on \mathbb{R} .

(c) Show that, for some $\kappa_c \in (0, \infty)$, to be determined, we have

$$\mathbb{P}(\gamma \text{ hits } [b, \infty)) = \begin{cases} 0, & \text{for } \kappa < \kappa_c, \\ 1, & \text{for } \kappa > \kappa_c. \end{cases}$$

(d) Hence show that, if $\kappa < \kappa_c$ then almost surely γ hits no point in $(0, \infty)$, while if $\kappa > \kappa_c$ then almost surely γ hits an unbounded set of points in $(0, \infty)$.

(e) What happens when $\kappa = \kappa_c$?

You may use without proof any general fact from the deterministic Loewner theory, provided that you state it clearly.

UNIVERSITY OF

 $\mathbf{4}$

(a) Let ϕ be a conformal automorphism of \mathbb{H} such that $\phi(0) = 0$ and which extends to a homeomorphism of initial domains $\mathbb{H} \cup (-1, \infty) \to \mathbb{H} \cup (\infty, 1)$. Find an explicit formula for ϕ .

(b) Let γ be an SLE(6) in $(\mathbb{H}, 0, \infty)$ and set $\tilde{\gamma}_t = \phi(\gamma_t)$. Show that $\tilde{\gamma}$ is an SLE(6) in $(\mathbb{H}, 0, 1)$ of scale $\sigma(w) = w/(1 - w)$.

(c) Write K_t and \tilde{K}_t for the compact \mathbb{H} -hulls generated by $\gamma(0, t]$ and $\tilde{\gamma}(0, t]$ respectively, and write g_t and \tilde{g}_t for their mapping out functions. Set

$$T = \inf\{t \ge 0 : \gamma_t \in (-\infty, -1]\}$$

and, for t < T, consider the conformal automorphism of \mathbb{H} given by

$$\phi_t = \tilde{g}_t \circ \phi \circ g_t^{-1}.$$

You may assume that the family of compact \mathbb{H} -hulls $(\tilde{K}_t)_{t < T}$ has the local growth property and has Loewner transform $(\tilde{\xi}_t)_{t < T}$ given by $\tilde{\xi}_t = \phi_t(\xi_t)$. You may also assume that

$$\operatorname{hcap}(\tilde{K}_t) = 2 \int_0^t \phi'_s(\xi_s)^2 ds.$$

Compute the time derivative $\dot{\phi}_t(z)$ for $z \in \mathbb{H}$ and hence deduce that

$$\dot{\phi}_t(\xi_t) = -3\phi_t''(\xi_t).$$

(d) Show that $\tilde{\gamma}$ is also a time-change of an SLE(6) in $(\mathbb{H}, 0, \infty)$ up to time T.

END OF PAPER