MATHEMATICAL TRIPOS Part III

Tuesday, 7 June, 2016 $-9{:}00~\mathrm{am}$ to 12:00 pm

PAPER 127

HOMOTOPY THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

What does it mean to say that a map $\pi : E \to B$ is a *Serre fibration*? Explain how any map is equivalent, in a sense which you should define, to a Serre fibration, and define the *homotopy fibre* of a map.

Describe the long exact sequence of homotopy groups associated to a Serre fibration, defining all of the maps involved. [You do not need to prove that it is exact.]

Let $n \ge 2$ and $f: S^1 \lor S^n \to S^n$ be the map which collapses S^1 to a point and is the identity on S^n . Let F denote the homotopy fibre of f. Compute $\pi_n(F)$ as a $\mathbb{Z}[\pi_1(F)]$ -module.

$\mathbf{2}$

Let $\eta: S^3 \to S^2$ denote the Hopf map. For an integer d > 0 let the space Y_d be obtained from S^2 by attaching a 4-cell along the map $d \cdot \eta: S^3 \to S^2$, that is, d times the Hopf map in the abelian group $\pi_3(S^2)$. Compute the ring $H^*(Y_d; \mathbb{Z})$.

Write

$$\eta_1: S^3 \xrightarrow{\eta} S^2 \subset S^2 \vee S^3 \qquad i_2: S^3 \xrightarrow{\mathrm{Id}} S^3 \subset S^2 \vee S^3,$$

and, for integers d > 0 and f, let the space $X_{d,f}$ be obtained from $S^2 \vee S^3$ by attaching a 4-cell along the map $d \cdot \eta_1 + f \cdot i_2 : S^3 \to S^2 \vee S^3$. Compute the ring $H^*(X_{d,f};\mathbb{Z})$ and the groups $\pi_1(X_{d,f})$ and $\pi_2(X_{d,f})$.

By considering a map to a suitable Eilenberg–MacLane space, compute $\pi_3(X_{d,f})$.

3

Let G be a finite group which acts freely on S^{n-1} , for $n \ge 3$, such that the induced action on $H^*(S^{n-1};\mathbb{Z})$ is trivial. Let \mathbb{F} be a field. By constructing a suitable fibration, show that there is an element $\Delta \in H^n(K(G, 1);\mathbb{F})$ such that

$$\Delta \smile -: H^i(K(G,1);\mathbb{F}) \longrightarrow H^{i+n}(K(G,1);\mathbb{F})$$

is an isomorphism for all i > 0.

Let p be a prime number. By computing $H^*(K(\mathbb{Z}/p, 1); \mathbb{F}_p)$, show that G cannot contain $\mathbb{Z}/p \times \mathbb{Z}/p$ as a subgroup.

CAMBRIDGE

 $\mathbf{4}$

Define the quaternionic projective space \mathbb{HP}^n and compute the ring $H^*(\mathbb{HP}^n; \mathbb{Z})$. By first considering the case n = 2, compute the map on cohomology induced by the inclusion $i : \mathbb{CP}^n \to \mathbb{HP}^n$.

For an odd prime number p, describe the action of the Steenrod operations \mathcal{P}^i on $H^*(\mathbb{HP}^n;\mathbb{F}_p)$. Show that $\mathbb{HP}^{15}/\mathbb{HP}^{12}$ is not homotopy equivalent to $\Sigma^{48}\mathbb{HP}^3$.

END OF PAPER